ERROR LOADING HTML FROM SOURCE (http://ncf.sobek.ufl.edu//design/skins/UFDC/html/header_item.html)

A BOST-CONNES SYSTEM FOR Qp

Permanent Link: http://ncf.sobek.ufl.edu/NCFE004592/00001

Material Information

Title: A BOST-CONNES SYSTEM FOR Qp
Physical Description: Book
Language: English
Creator: Gunton, Cody
Publisher: New College of Florida
Place of Publication: Sarasota, Fla.
Creation Date: 2012
Publication Date: 2012

Subjects

Subjects / Keywords: Bost-Connes Systems
Explicit Class Field Theory
C* Dynamical System
Genre: bibliography   ( marcgt )
theses   ( marcgt )
government publication (state, provincial, terriorial, dependent)   ( marcgt )
born-digital   ( sobekcm )
Electronic Thesis or Dissertation

Notes

Abstract: Following the 1995 paper of Bost and Connes, which defined the Bost-Connes system C_Q, we define and study a C*-dynamical system C_Qp related to the class field theory of Qp. We consider quotients of a pair (?,?_0) of discrete two-by-two matrix groups and show that there is a map from the corresponding Hecke algebra A(?, ?_0) to the algebra of unitary operators on \ell^2(?/?_0). Extending this map to the closure of A(?,?_0) in a regular representation of \ell^2(?/?_0) gives C_Qp. A presentation in terms of two classes of generators is given, and is used to find a representation of A(?,?_0), which is conjectured to extend to a covariant representation of C_Qp having partition function equal to the Euler factor of the Riemann zeta function at p.
Statement of Responsibility: by Cody Gunton
Thesis: Thesis (B.A.) -- New College of Florida, 2012
Electronic Access: RESTRICTED TO NCF STUDENTS, STAFF, FACULTY, AND ON-CAMPUS USE
Bibliography: Includes bibliographical references.
Source of Description: This bibliographic record is available under the Creative Commons CC0 public domain dedication. The New College of Florida, as creator of this bibliographic record, has waived all rights to it worldwide under copyright law, including all related and neighboring rights, to the extent allowed by law.
Local: Faculty Sponsor: McDonald, Patrick

Record Information

Source Institution: New College of Florida
Holding Location: New College of Florida
Rights Management: Applicable rights reserved.
Classification: local - S.T. 2012 G97
System ID: NCFE004592:00001

Permanent Link: http://ncf.sobek.ufl.edu/NCFE004592/00001

Material Information

Title: A BOST-CONNES SYSTEM FOR Qp
Physical Description: Book
Language: English
Creator: Gunton, Cody
Publisher: New College of Florida
Place of Publication: Sarasota, Fla.
Creation Date: 2012
Publication Date: 2012

Subjects

Subjects / Keywords: Bost-Connes Systems
Explicit Class Field Theory
C* Dynamical System
Genre: bibliography   ( marcgt )
theses   ( marcgt )
government publication (state, provincial, terriorial, dependent)   ( marcgt )
born-digital   ( sobekcm )
Electronic Thesis or Dissertation

Notes

Abstract: Following the 1995 paper of Bost and Connes, which defined the Bost-Connes system C_Q, we define and study a C*-dynamical system C_Qp related to the class field theory of Qp. We consider quotients of a pair (?,?_0) of discrete two-by-two matrix groups and show that there is a map from the corresponding Hecke algebra A(?, ?_0) to the algebra of unitary operators on \ell^2(?/?_0). Extending this map to the closure of A(?,?_0) in a regular representation of \ell^2(?/?_0) gives C_Qp. A presentation in terms of two classes of generators is given, and is used to find a representation of A(?,?_0), which is conjectured to extend to a covariant representation of C_Qp having partition function equal to the Euler factor of the Riemann zeta function at p.
Statement of Responsibility: by Cody Gunton
Thesis: Thesis (B.A.) -- New College of Florida, 2012
Electronic Access: RESTRICTED TO NCF STUDENTS, STAFF, FACULTY, AND ON-CAMPUS USE
Bibliography: Includes bibliographical references.
Source of Description: This bibliographic record is available under the Creative Commons CC0 public domain dedication. The New College of Florida, as creator of this bibliographic record, has waived all rights to it worldwide under copyright law, including all related and neighboring rights, to the extent allowed by law.
Local: Faculty Sponsor: McDonald, Patrick

Record Information

Source Institution: New College of Florida
Holding Location: New College of Florida
Rights Management: Applicable rights reserved.
Classification: local - S.T. 2012 G97
System ID: NCFE004592:00001


This item is only available as the following downloads:


Full Text

PAGE 1

ABOST-CONNESSYSTEMFOR Q p BY CODYGUNTON AThesis SubmittedtotheDivisionofNaturalSciences NewCollegeofFloridainpartialfulllmentoftherequirementsforthedegree BachelorofArts UnderthesponsorshipofPatrickMcDonald,ProfessorofMathematics Sarasota,Florida May,2012

PAGE 2

Preface Theyoungeldofarithmeticnoncommutativegeometryexploresideasthatare,in mymind,ofunsurpassedbeauty.Incastingarithmeticquestionsintermsofphysics viathelanguageofnoncommutativegeometry,theeldprovidesanexcitingand promisingapproachtofundamentalproblemsofnumbertheory.Thoughtheeldis steadilygrowing,veryfewpeoplehavemorethanacursoryunderstandingofevenits basicprinciples,makingitdicultforanovicetoenter.Therefore,Ifeelextremely luckytohavehadtheopportunitytowritethisthesis,andforthisowethanksto myadvisor,ProfessorPatrickMcDonaldforallowingmethefreedomtotakeona dicultandsomewhatriskythesisproject.Ithankhimalsoforhisyearsofcareful attentionandguidance,histeaching,andforhisfriendship.IalsoProfessorsDavid MullinsandDonColladayfortheirinstructionandservicetomeasmembersofmy baccalaureatecommittee. IthankmyfriendsatNewCollegeforthreeyearsofsupportandsomanymemories thatIwillthinkoffondlythroughoutmylife.Thankstoyouall|Iamcertainlya healthierandhappierpersonbecauseofyourfriendship. Finally,Ithankmymotherandmysisterforbringingsomuchjoytomylife. i

PAGE 3

Contents Prefacei Abstractiv Chapter1.Introduction1 1.Explicitclasseldtheory1 2.Anapproachusingnoncommutativegeometry5 3.Localclasseldtheoryandthisthesis7 Chapter2.LocalFieldsandLocalClassFieldTheory9 1.The p -adicnumbers Q p 9 2.Nonarchimedeanlocalelds12 3.Statementsofclasseldtheory15 4.Explicitlocalclasseldtheory16 Chapter3. C -algebrasandQuantumStatisticalMechanics18 1.Introduction18 2.TheRiemannzetafunction19 3.Somephysics21 4.Hilbertspacesand C -algebras24 5. C -dynamicalsystems27 6.Group C -algebras28 7.Groupoidsandgroupoidalgebras30 8.vonNeumannalgebras32 ii

PAGE 4

Chapter4.ABost-ConnesSystemfor Q p 33 1.TheToeplitzalgebra p 33 2. ax + b groupsandthehomogeneousspace p 35 3.ThelocalBost-Connessystem C Q p 39 4.Representations48 5.Anactionof Z p 52 6.Futuredirections54 Bibliography55 iii

PAGE 5

ABOST-CONNESSYSTEMFOR Q p CodyGunton NewCollegeofFlorida,2012 Abstract Followingthe1995paperofBostandConnes,whichdenedtheBost-Connes system C Q ,wedeneandstudya C -dynamicalsystem C Q p relatedtotheclasseld theoryof Q p : Weconsiderquotientsofapair)]TJ/F80 11.9552 Tf 179.462 0 Td [(; )]TJ/F21 7.9701 Tf 7.314 -1.793 Td [(0 ofdiscretetwo-by-twomatrix groups,andshowthatthereisamapfromthecorrespondingHeckealgebra A )]TJ/F80 11.9552 Tf 11.866 0 Td [(; )]TJ/F21 7.9701 Tf 7.314 -1.793 Td [(0 tothealgebraofunitaryoperatorson ` 2 )]TJ/F80 11.9552 Tf 11.867 0 Td [(= )]TJ/F21 7.9701 Tf 7.314 -1.793 Td [(0 : Extendingthismaptotheclosureof A )]TJ/F80 11.9552 Tf 11.867 0 Td [(; )]TJ/F21 7.9701 Tf 7.314 -1.794 Td [(0 inaregularrepresentationon ` 2 )]TJ/F80 11.9552 Tf 11.867 0 Td [(= )]TJ/F21 7.9701 Tf 7.314 -1.794 Td [(0 gives C Q p : Apresentationinterms oftwoclassesofgeneratorsisgiven,andisusedtondarepresentationof A )]TJ/F80 11.9552 Tf 11.866 0 Td [(; )]TJ/F21 7.9701 Tf 7.315 -1.794 Td [(0 ; whichisconjecturedtoextendtoacovariantrepresentationof C Q p havingpartition functionequaltotheEulerfactoroftheRiemannzetafunctionat p: ProfessorPatrickMcDonald DivisionofNaturalSciences iv

PAGE 6

CHAPTER1 Introduction Thisintroductionbeginswithadescriptionoftherudimentsofalgebraicnumber theorynecessarytounderstandtheproblemofexplicitclasseldtheory.Inbrief,this istheproblemofgivingexplicitdescriptionsofobjectsthatariseinclasseldtheory butarenotconstructedinausefulwayintheproofs.Theintroductionthenbriey describesanewapproachtothisproblemusingnoncommutativegeometry,andits origininthe1995paper[ 3 ].Itendswithadescriptionofplaceofthisthesisinthat programofresearch.Generalpurposereferencesonthismaterialare[ 9 17 20 21 ]. 1.Explicitclasseldtheory Theclassicaltheoremsofalgebraicnumbertheoryarestatementsaboutnumber elds.Recallthatanumbereld K isaniteextensionoftherationalnumbers Q thatis,aeldthathasnitedimensionasavectorspaceover Q .Beinganite extension, K isnecessarilyalgebraic,henceisgeneratedbyattachingnitelymany rootsofpolynomialsto Q : Forexample,thequadraticeldsare Q p n = Q [ x ] = h x 2 )]TJ/F80 11.9552 Tf 11.956 0 Td [(n i .1 where0 ; 1 6 = n 2 Z : Thenotation h x 2 )]TJ/F80 11.9552 Tf 11.69 0 Td [(n i isusedfortheidealgeneratedby x 2 )]TJ/F80 11.9552 Tf 11.69 0 Td [(n Asaset, Q p n = f a + b p n : a;b 2 Q g : .2 Aeldextensionissometimeswrittenas K= Q toindicatethat K isbeingconsidered asanextensionoftherationals,ratherthananextensionofsomeintermediateeld. 1

PAGE 7

Havingextended Q ; itisnaturaltowonderifthereisacorrespondingextension oftheintegers Z : Thedenitionofsuchanextensionismotivatedbythefollowing: Proposition 1.1 Arationalnumber x 2 Q isthezeroofamonic 1 polynomial withcoecientsin Z ifandonlyif x 2 Z : Theifandonlyif"saysthatthisisanequivalentconditiontobeinganinteger. Hencewemakethefollowingdenition. Definition 1.1 Theintegers O K ofanumbereld K aretheelementsof K satisfyingamonicpolynomialwithcoecientsin Z : Ringsofalgebraicintegersdonot,ingeneral,haveallofthepropertiesofthe ring Z : Animportantdierenceisthatrationalintegersfactoruniquelyasproducts ofprimes,butringsofalgebraicintegersdon'tnecessarilyhavethisproperty.The standardexampleoffailureofuniquefactorizationisexpressedbytheequations + p )]TJ/F51 11.9552 Tf 9.298 0 Td [(5 )]TJ 11.956 9.975 Td [(p )]TJ/F51 11.9552 Tf 9.299 0 Td [(5=6=2 3asintegersin Q p )]TJ/F51 11.9552 Tf 9.298 0 Td [(5. Itturnsoutthatthisperceivedlossofuniquefactorizationisreallythelossofanother nicepropertyofthering Z ; Z isaprincipleidealdomain,butnotallringsofalgebraic integershavethisproperty.However,thefollowingisasuitablereplacement. Theorem 1.2 Thering O K isaDedekinddomain,andthusanyideal I of K determinesasetofexponents f e P : P isaprimeof K g ; onlynitely-manyof whicharenonzero,suchthat I = Y P P e P : .3 Itisconventionaltorefertoidealsof O K asidealsof K: Givensomeprime number p 2 Z ; onecanformaprimeideal p Z andtheideal p O K ; whichiseasilyseen 1 Apolynomial a 0 + + a n x n issaidtobemonicif a n =1. 2

PAGE 8

tocontain p Z : Theideal p O K neednotbeprime.Startingwithanumbereld k= Q andconsideringinsteadtherelativeextension K=k; onehasasimilarresult;if p is aprimeof K; then p O k isanidealof O K thatneednotbeprime.Afundamental questionmotivatingclasseldtheoryis Question 1.3 Givenanextension K=k ofnumbereldsandaprimeideal p O k ; howdoes p O K factorin O K ? Animportantstepintreatingthisquestionistoobservethatthedegreeof K itsdimensionasavectorspaceover k determines`howmuchgrowthaprimecan experiencewhenpromotedtoanidealof K .'Sinceanyprimeofanynumbereldis maximal,eachcorrespondingquotientisaeld,calledtheresidueeldof K atthat prime.When e P > 0inthefactorizationof p O K ; thenumber e P j p : = e P is calledtheramicationindexof P over p andthenumber f P j p : =# O K = P ; the dimensionoftheresidueeld,iscalledtheresidualdegree.Thesearerelatedbythe followingresult. Theorem 1.4 Supposethat K=k hasdegree n andthat p O K = Q P j p P e P j p Then n = P P j p e P j p f P j p : When K=k isGalois,allofthe e P j p areequal,say to e ,andallofthe f P j p areequal,sayto f; so n = efg where g isevidentlythe numberofprimefactorsof p O K : Theramicationandresidualindicesgiveawayofmeasuringhowfaranidealis frombeingprime.Therearethreeextremes: p O K canbeprime,so p O K = P with e P j p =1 ; whichforces f P j p = n ;itcanbetotallyramied,meaning p O K = P n with e P j p = n andthus f P j p =1 ; oritcansplit,havingmaximumallowable numberofprimefactor,sothat p O K = Q P j p p e P j p ; with e P j p = f P j p =1forall P j p : Classeldtheorysolvesthefollowingproblem: 3

PAGE 9

Problem 1.5 Givenaniteset S ofprimesof O k ,ndanabeliannumbereld K=k suchthattheprimesof k splittingin K areexactlythosein S: Notethehypothesisthat K=k beabelian,i.e.,thattheextensionisGaloiswith anabelianGaloisgroup.Thisisastrongrestriction,sayingthatgroupofsymmetries of K=k isofaparticularlysimpleclass.Theanalogousquestionforarbitrarynumber eldsisadicultopenproblem. Arststepinapproachingthisproblemistobundlealloftheabelianextensions of k intoasingleobject,themaximalabelianextension k ab =k: Asdescribedingreater detailinthenextchapter,oneofthemajorassertionsofglobalclasseldtheoryis theexistenceoftheArtinmap k : I k )167(! Gal k ab =k ; .4 ahomomorphismtakingtheideles I k of k cfDenition2.2intothesymmetry groupGal k ab =k : Thismapisshowntohavenicebehaviorunderrestrictiontonite subeldsof k ab ; or,equivalently,niteAbelianextensionsof k: Toparsethedenition oftheProblemofFabulousStatesgivenbelow,thereaderwillneedtoknowthatthe Artinmapcanbemodiedtoanisomorphismwithsourceequalto C k =C k ; a quotientoftheideleclassgroup C k : = I k =k ; byitsconnectedcomponentatthe identity. Theproofsofglobalclasseldtheoryarelongandabstract,relyingheavilyon groupcohomologycomputations 2 .Theproofsshow,forinstance,thattheArtinmap exists,butdonotgiveanexplicitdescriptionofthemath e.g., anitelistofrules forcomputingitsimage,anddonotgiveanexplicitdescriptionof k ab e.g., aset ofgeneratorsfor k ab =k .Theproblemofexplicitclasseldtheoryistogivemore tangibledescriptionsof k ab =k andtheArtinmap.Amorespecicvariant,calling forthegeneratorsofthemaximalabelianextensiontobegivenbysomeappropriate 2 NumbertheoristKevinBuzzardofImperialCollegeLondonontheproofsofglobalclasseldtheory:...youdon't wanttoreadtheproofs.Ididthispreciselyonceinmylifeandtheyareveryunilluminating."[ 2 ]. 4

PAGE 10

transcendentalcomplexfunction,isknownasHilbert's12thproblem,beingthat itwasthetwelfthstatedinhishighlyinuential1900addresstotheInternational CongressofMathematicians.ThisrenementoftheproblemisalsocalledKronecker's Jungendtraum,asitwasa youthfuldream ofhis. Theexplicitclasseldtheoryproblemisonlyconsideredsolvedintwoofthe simplestpossiblecases.Thesimplestisthecase k = Q ; wheretheKronecker-Weber theoremshowsthat Q ab = Q isgeneratedasaeldbytherootsofunity.Thenextsimplestcaseisthatwhere k isanimaginaryquadraticeld, i.e., where k = Q p )]TJ/F80 11.9552 Tf 9.298 0 Td [(n forsomepositivesquarefreeinteger n: Thisismuchmoredicultthantherst case.Here, k ab =k isgeneratedbyspecialvaluesofamodularformattachedtoan appropriateellipticcurvehavingaspecialsymmetrycalledcomplexmultiplication [ 20 ].Naturally,muchworkhasbeendoneonwhatshouldbenext-simplestnumber elds,therealquadraticelds,obtainedfrom Q byattachingthesquarerootofa positivesquarefreeinteger.Inthiscaseasetofgenerators,theStarknumbers,for themaximalabelianextensionhasbeenconjectured[ 19 ]. 2.Anapproachusingnoncommutativegeometry Intheir1995paper[ 3 ]HeckeAlgebras,TypeIIIFactorsandSpontaneousSymmetryBreakinginNumberTheory,"Jean-Beno^tBostandAlainConnesconstructa C -algebra C Q nowknownastheBost-Connessystem.Thisisstudiedasthealgebra ofobservablesofanensembleofquantummechanicalparticles,andsomeremarkable connectionstotheclasseldtheoryof Q arefound.Thatpaperprovesthefollowing: Theorem 1.6[ 3 ] Theequilibriumstatesof C Q areoftheform ; x : = Q )]TJ/F21 7.9701 Tf 6.587 0 Td [(1 tr e e )]TJ/F23 7.9701 Tf 6.587 0 Td [(H ; .5 where e istheliftofarepresentation forsome 2 Gal Q ab = Q ofacertainHecke algebra A )]TJ/F80 11.9552 Tf 11.867 0 Td [(; )]TJ/F21 7.9701 Tf 7.314 -1.793 Td [(0 toits C -closure C Q ;H isanexplicitlydescribedHamiltonian, is 5

PAGE 11

arealparameterrepresentingthereciprocaltemperature,and Q istheRiemannzeta function.Inparticular,thepartitionfunctionof C Q istheRiemannzetafunction : MorewillbesaidabouttheRiemannzetafunctionlater.Fornow,wenotethatthe statesforxedinverse-temperature ofthesystem C Q arelabelledbytheelements ofthemaximalabelianextensionof Q : The2005paper[ 6 7 ]ofConnes,Marcolliand Ramachandranconstructsa C -algebraforanarbitraryimaginaryquadraticeldand provesananalogoustheorem.Thesetwopaperssuggestthatthetheoryofoperator algebrasmightshedsomelightontheexplicitclasseldtheoryproblem.Amore specicprogramofresearchfortheclasseldtheoryofrealquadraticeldswas proposedbyManinin[ 16 ].Thesolutiontotheexplicitclasseldtheoryproblemfor imaginaryquadraticeldsassociatestosuchaeldanellipticcurvetopologically, acomplextorusthathas`complexmultiplication,'meaningthatthecurvehasthe largestpossibleendomorphismgroup.Themaximalabelianextensioninthiscaseis generatedbyspecialvaluesofamodularformassociatedtotheellipticcurve.Manin's realmultiplicationprogramsuggestsdevelopingaparalleltheoryofnoncommutative toriwithspecialsymmetrytounderstandtheclasseldtheoryofrealquadraticelds. Somenoncommutativetoriwithrealmultiplicationhavealreadybeenstudiedin[ 18 ]. Theproblemofconstructingsuitablegeneralizationoftheconstructionsof[ 3 6 7 ]to othernumbereldsiscalledtheproblemoffabulousstates[ 17 ].Thoughsomeofthe objectsinvolvedhavenotbeenintroduced,astatementofthisproblemisgivenfor completeness. Problem 1.7TheProblemofFabulousStates Let k beanumbereld.The problemoffabulousstatesfor k isthatofconstructinga C -dynamicalsystem A; t withsubalgebra A Q satisfying: Thequotient C I k =C I k actson A assymmetriescompatiblewith t 6

PAGE 12

Letting E 1 denotethesetofextremalequilibriumstatesatzerotemperature, the 2 E 1 evaluatedon a 2 A Q ,satisfy a liesinanalgebraicclosureof k in C ; theelementsof f a : a 2 A;' 2 E 1 g generate k ab Theclasseldtheoryisomorphism e k : C I k =C I k )167(! Gal k ab =k intertwinestheactions, = e )]TJ/F21 7.9701 Tf 6.587 0 Td [(1 k ; forall 2 Gal k ab =k andforall 2 E 1 3.Localclasseldtheoryandthisthesis Thisthesisinitiatestheoperatoralgebrasstudyof local explicitclasseldtheory. Eachprimeidealofanumbereld k givesanabsolutevalue v on k: Thenonarchimedean,characteristic-zerolocaleldsarethecompletions k v with k anumber eldand v anabsolutevaluecomingfromaprimeidealof k: Localeldsareofgreat importanceinnumbertheory,providingsomethinglikeaworldparalleltothatof thenumberelds,whereoftenanideaaboutnumbereldsisstudiedintermsof localelds.Forinstance,thereisacompleteclasseldtheoryforlocaleldswhich providesalocalArtinmap k : k )167(! Gal k ab =k : Unlikeinthecontextofnumber elds,thereisacompletelyexplicittreatmentoflocalclasseldtheoryforarbitrary localelds,comprisingwhatisknownasLubin-Tatetheory. Chapter4constructsandstudiesa C -algebra C Q p thatisa p -adicanalogueof thesystemintroductedinthepaper[ 3 ]ofBostandConnes.Therststepinthe constructionistoassociatetoaprime p apairofdiscretematrixgroups)]TJ/F21 7.9701 Tf 170.246 -1.794 Td [(0 .The closureoftheassociatedHeckealgebra A )]TJ/F80 11.9552 Tf 11.867 0 Td [(; )]TJ/F21 7.9701 Tf 7.314 -1.793 Td [(0 initsleft-regularrepresentation on ` 2 )]TJ/F80 11.9552 Tf 11.866 0 Td [(= )]TJ/F21 7.9701 Tf 7.314 -1.793 Td [(0 givesasubalgebraof U \051 0 ; thecommutantoftheunitaryoperatorson 7

PAGE 13

` 2 )]TJ/F80 11.9552 Tf 11.867 0 Td [(= )]TJ/F21 7.9701 Tf 7.314 -1.793 Td [(0 : Thissubalgebraisdenedtobe C Q p : Apresentationof C Q p iscomputed,and isusedtogiveacovariantrepresentationwithpartitionfunctionequaltotheEuler factorof Q at p: Finally,anactionon A )]TJ/F80 11.9552 Tf 11.867 0 Td [(; )]TJ/F21 7.9701 Tf 7.314 -1.793 Td [(0 byGal Q tot p = Q p isdeveloped.The thesisstopsshortofcompletelyconstructinga C -dynamicalsystemwithpartition functionequaltothefactoroftheRiemannzetafunctionat p; leavingasaconjecture atheoremregardingtheextensionofrepresentationsof A )]TJ/F80 11.9552 Tf 11.866 0 Td [(; )]TJ/F21 7.9701 Tf 7.315 -1.793 Td [(0 toits C -closure. 8

PAGE 14

CHAPTER2 LocalFieldsandLocalClassFieldTheory ThischaptergivesanaccountofthetheoryoflocaleldsandlocalclasseldtheoryrelevanttotheconstructionoftheBost-Connessystemfor Q p : Generalreferences forthischapterare[ 20 { 22 ]. 1.The p -adicnumbers Q p Recallthatanabsolutevalueisareal-valuedmap x 7)167(!j x j onaeld K satisfying thethreeconditions AV1 j x j 0withequalityifandonlyif x =0 AV2 j xy j = j x jj y j AV3 j x + y jj x j + j y j Theeld Q hasthefamiliarabsolutevalueoftherealnumberswhichxespositive numbersandmultipliesnegativenumbersby )]TJ/F51 11.9552 Tf 9.298 0 Td [(1 : Thereisalsoanabsolutevaluefor eachprimenumber p: Definition 2.1 Denethe p -adicabsolutevalueof r 2 Q by j r j p = p )]TJ/F23 7.9701 Tf 6.587 0 Td [(n ; where r = p n a b n 2 Z and p a;b Evidently,arationalnumberis p -adicallysmallerthananotherifitisdivisible byahigherpowerof p; andtwonumbersarecloseriftheirdierenceisdivisibleby ahigherpowerof p: Astartingpointinalgebraicnumbertheoryisthefollowing remarkabletheorem. Theorem 2.1 [Ostrowski]Anyabsolutevalueon Q isequivalenttotheabsolute valueoftherealsortosome p -adicabsolutevalue. 9

PAGE 15

Twoabsolutevaluesaresaidtobeequivalentifthecorrespondingmetrictopologiesarethesame.Theequivalenceisessentiallyachoiceofnameforeachopenball ofthemetricspace,andhenceisirrelevantinwhatfollows.Ostrowski'stheoremsuggestsanimportantchangeinperspective:thatweshouldregardabsolutevaluesas generalizationsofprimenumbers.Thoughthisperspectivedoesaordsomeuniformityinalgebraicnumbertheory,itisimportanttonotethatthe p -adicabsolutevalue is,inmanyways,drasticallydierentfromtheabsolutevalueofthereals,henceforth denotedby jj 1 .Thesedierencescomefromthefactthatthe jj p satisfy j x + y j p max fj x j p ; j y j p g ; .1 calledtheultrametricinequality,whichisstrongerthanthetriangleinequality. Recallthattheeldofrealnumbers R is,bydenition,thecompletionof Q at jj 1 : Theprocessofcompletionisvalidforanyabsolutevalueonavectorspace,and hencecanbeappliedto Q under jj p : Thisleadstotheelds Q p of p -adicnumbers, whicharecentralinwhatfollows. Theeld Q p isdenedasacompletion,soitmayfeelintangibletothosenot familiarwiththeprocedureofcompletion.Therestofthesectionwillbuildup Q p staringwithitsdiscretesubring Z ; sheddinglightontheviewof Q p asacompletion. Itisanelementaryfactthatanyintegercanbewrittenas a 0 = b 0 + c 0 p forsome 0 b 0


PAGE 16

Thatis,addinghighordertermsdoesnotchangethesizeofthesum,soanysuch innitesuminpowersof p converges.Thesetofsuchinnitesumsisalocally compacttopologicalring,theringof p -adicintegers,denotedby Z p ;asaset, Z p : = X i 0 a i p i : 0 a i


PAGE 17

that a=b 2 Z p if a 6 =0 ; soeach x j canbeexpandedinpowers p .Since f x j g converges, wehave j x k )]TJ/F80 11.9552 Tf 12.47 0 Td [(x j j p 0as j !1 for k>j: Thismeansthatthe p -expansionsof x k )]TJ/F80 11.9552 Tf 12.033 0 Td [(x j beginathigher-ordertermsforincreasing j; sothatforeachinteger n there isaninteger N suchthatall x j with j N havethesamerst n termsincommon. Thisshowsthat f x j g convergestoanelementof F .Thisprovesthat F = Q p : In viewofourabovedescriptionof Z p ; weseethattheelementsof Z p arethose p -adic numbersofnormnotexceeding1 ; i.e.,that Z p istheclosedunitballin Q p : Itisoftenusefultoconsideranelement x 2 Q p with 1 x = P i )]TJ/F23 7.9701 Tf 13.173 0 Td [(N x i p i asthesum x =[ x ]+ z ,where z : = P i 0 x i p i isevidentlyin Z p and[ x ] : = P 0 >i )]TJ/F23 7.9701 Tf 13.173 0 Td [(N x i p i isasum ofrationalnumbersof p -adicabsolutevalue > 1 : Therationalnumber[ x ]iscalledthe fractionalpartof x; and z theintegerpartof x: Itisclearthat x =[ x ]mod Z p isthen anelementoftheform a=p N with a notdivisibleby p .Everysuchrationalnumber correspondstoa p N -rootofunityunderthebijection a=p N exp ia=p N ; sowe identify Q p = Z p withthesetof p th-powerrootsofunityin C : Thesameconsiderations showthatthering Z p =p i Z p haselementsthatareinbijectionwith Z =p i Z : Proposition 2.3 Therearegroupisomorphisms Q p = Z p f setof p th-powerrootsofunity g S 1 C .3 Z p =p i Z p Z =p i Z : .4 2.Nonarchimedeanlocalelds Thefollowingtheoremisofdeepimportance. Theorem 2.4 Anylocaleldofcharacteristiczeroisaniteextensionofsome completionof Q : Toprovethis,onechoosesaHaarmeasure ontheeldandstudiesthefunction : K )167(! R determinedbytheequation xU = x U where U K isany 1 Whenevera p -adicnumberiswritteninthisform,itasassumedthat a )]TJ/F24 5.9776 Tf 5.756 0 Td [(N 6 =0 ; so j x j p = p N : 12

PAGE 18

openset.Thisthesisrestrictsattentiontothecaseofcharacteristic0,butitshould bementionedthatthelocaleldsofpositivecharacteristic,whichareexactlythe niteextensionsoftheelds F p T offormalpowerseriesoverniteelds,have provedfruitfulgroundsforformulatingconjecturesandtestingideasaboutnumber elds.ItisbecauseofTheorem2.4andthefactthatfunctioneldshaveanotionof 1 comingfromprojectivegeometrythatweusethenotation jj 1 ,andsometimes refertothisasthe`primeatinnity.' Anabsolutevalueonaeld K restrictstoanabsolutevalueonanysubeldof K: Thus,byTheorems2.4and2.1,thelocaleldsaredeterminedbythepossible extensionsoftheabsolutevalues jj p and jj 1 or,equivalently,theyaredetermined bytheextensionsof Q p and R .Theextensionsofthe Q p andthecorresponding absolutevaluesarecallednonarchimedean,sincetheydonothavethearchimedean propertythatforeach B 2 R andany x intheeldthereareonlynitely-many integers n suchthat j nx j B: Fortherestofthissection, K denotesanonarchimedeanlocaleld.Thering ofintegers O K of K isdenedtobetheclosedunitballin K; thesetofelements ofnormnotexceeding1.Itisafactthatthereisanelement k 2O K uniqueup tomultiplicationbyaunit,suchthateveryelementof K isoftheform u n K with u 2O K and n 2 Z : Theintegers O K arethenthose u n with n 0[ 21 ].There arenotionsoframicationandinertiainanalogywiththosefornumberelds,as discussedbrieyintheintroduction.Theramicationindexof K=k ofdegree n is denedtobetheinteger e K=k suchthatforsome u 2O K ; e K=k K = u k ; or,equivalently, O e K=k K = O k : .5 13

PAGE 19

Theresidualindex f K=k isdenedtobethedegreeoftheextensionofresidue elds f K=k : =deg h O K = K O k = k i .6 Thetheoryofnonarchimedeanlocaleldsandnumbereldsttogetherasfollows. Eachnumbereld k determinesacollectionofprimeidealsoftheringofintegers O k : Eachsuchprime p determinesanabsolutevalue v on k; andthecorresponding completion k v isalocaleld.Bytheabove, k v containssome p -adiceld Q p asa subeld,andtheabsolutevalue v issaidtolieover,ortodivide,the p -adicabsolute value jj p : Inadiagram, p o o / / v k / / k v p Z p o o / / jj p Q / / ? O O Q p ? O O .7 Moregenerally,if K=k isaniteextensionofanumbereld k ,thenanyabsolute value w on K liesoversomeabsolutevalue v of k; givinganextensionoflocalelds K w =k v : Inadiagram, P o o / / w K / / K w p o o / / v k / / ? O O k v ? O O .8 Startingwithanideal a of O k ; therearenitelymanyprimesof O k dividing a : Eachof theseprimescanbeextendedin K=k ,andthecorrespondingextensionofcompletions 14

PAGE 20

givesalloftheinformationabouttheextensionofthatprimein K=k: Inadiagram, p i O K D D D D D D D D D / / P j / / O K / / K P j o o / / w j o o / / K w j p i / / O k ? O O / / k ? O O p i o o / / v i o o / / k v i ? O O a = = z z z z z z z z .9 e K w j =k v i = e P j j p i .10 f K w j =k v i = f P j j p i .11 3.Statementsofclasseldtheory Oneoftheassertionsoflocalclasseldtheoryisthefollowing. Theorem 2.5 Foranynonarchimedeanlocaleld k thereexistsamap k ,the localArtinmap,suchthatanyniteextensionabelianextension K=k givesacommutativediagram k k / / Gal k ab =k res : k = Nm K K=k / / Gal K=k ; .12 where K=k isinducedby k and Nm K isacertainsubgroupof k : Forvariousreasons,itisoftenconvenienttoreplaceanumbereld k byitsring ofadeles A k ; andtheunits k of k byitsgroupofideles I k : Definition 2.2 Let M k denotethesetofabsolutevaluesof k: Thering A k of adelesof k isthesubring A k Y v 2 M k k v .13 15

PAGE 21

consistingofthoseelements ;x v ; suchthat x v 2O k v forallbutnitely-many v: Theidelesof k istheunitsgroup I k = A k ; whichiseasilyseentobethesubgroup I k Y v 2 M k k v .14 consistingofthoseelements ;x v ; suchthat x v 2O k v forallbutnitely-many v: Oneofthemainassertionsofglobalclasseldtheoryisthefollowing: Theorem 2.6 Foranynumbereld k thereexistsauniquecontinuoushomomorphism k : I k )167(! Gal k ab =k .15 suchthatanyniteabelianextension K=k withanychoiceofaprime w of K lying overaprime v of k givesacommutativediagram I k a 7! k a j L / / Gal K=k k v k v / / ? O O Gal K w =k v ? O O .16 Deeperconsiderationsleadonetoanisomorphism C k =C k )167(! Gal k ab =k ; .17 where C k : = I k =k istheideleclassgroupof k and C k istheconnectedcomponentof C k attheidentityinatopologywhichneedn'tbeconsidered. 4.Explicitlocalclasseldtheory Asmentionedabove,thereisanexplicitapproachtolocalclasseldtheorycalled Lubin-Tatetheory.Thefollowingtheoremisasummary.Itmakesuseoftwoinnitedimensionalextensionsof K; obtainedinmuchthesamewayas K ab : Oneofthese 16

PAGE 22

is K un ; thesmallestextensionof K containingalloftheunramiedextensionsof K: Theotheris K tot ; thesmallestextensionof K containingallofthetotallyramied extensionsof K: Theorem 2.7Lubin-TateTheory[ 20 ] Let K= Q p beanonarchimedeanlocal eld. Themaximalunramiedextension K un =K of K isgeneratedbytherootsof unityofordernotdivisibleby p: Thetotallyramiedextension K tot =K isgeneratedbytheunionofallofthe sets n ; where n consistsoftherootsinanalgebraicclosureof K ofthe n foldcomposition f f foranychoiceofformalpowerseries f 2O K [[ X ]] satisfyingtwoadditionalproperties. Themaximalabelianextension K ab =K isthesmallesteldcontaining K un and K tot ; i.e.,thecompositumofthesetwoelds. Forany a 2 K ; thereisanexplicitformulafortheactionof K a on K un and K tot ; andthusonthecompositum. TheresultsofChapter4ofthisthesisonlyconcernthelocaleld Q p ; which satises Q tot p Z p ; Q un p b Z ; .18 where Z p istheunitsgroupoftheringof p -adicintegersand b Z isthepronite completionoftheintegers,consistingof ;x j +1 ;x j ; 2 Y j 0 Z =n j Z with n j j n j +1 .19 suchthat x j = x j +1 mod n j Z ; where f n j : j 0 g isanyofintegerssuchthat n j j n j +1 forall j 0 : 17

PAGE 23

CHAPTER3 C -algebrasandQuantumStatisticalMechanics 1.Introduction Thischaptergivesthebackgroundinphysicsandthetheoryofoperatoralgebras necessarytomotivateanddescribetheworkof[ 3 ]andthenalchapterofthisthesis. Itdoesnotprovideacomplete,balancedaccountofanyofthistheory,focusing insteadongivingaminimalpresentationofthoseideasthatwillhelpthereader understandtheformulationoftheproblemoffabulousstatesdescribedabove.An excellentintroductiontooperatoralgebrasisgivenin[ 10 ].Otherusefulreferences are[ 8 15 23 ]. ItisperhapssurprisingthattheworkofBost-Connes,whichcallsuponmuch modernabstractmathematicalmachinery,hasitsrootsinthefollowingdown-toearthobservation: TheRiemannzetafunctionlookslikeapartitionfunction : TheRiemannzetafunctionissometimesdenotedby Q toemphasizethatitisintrinsicallyassociatedtothenumbereld Q ; asdescribedlater.Theaboveobservation leadsnaturallytothefollowingproblem: Problem 3.1 Describeastatisticalmechanicalsystemwith Q asitspartition function. Thischapterwillmakeprecisethequestionofwhatitmeanstoconstructsuch asystem,anddescribetherelatedproblemofconstructingastatisticalmechanical systemforeachprimeof Q : 18

PAGE 24

2.TheRiemannzetafunction TheRiemannzetafunctionisdenedas[ 11 ] s : = X n 1 n )]TJ/F23 7.9701 Tf 6.587 0 Td [(s ; .1 whichweseeisconvergentfor < s> 1bythecomparison P n ; R dn: Wetakethe stancethattheRiemannzetafunctionisofsucientinterestonitsowntojustify interestinProblem3.1.Considerthefollowing. Proposition 3.2Eulerfactorization TheRiemannzetafunctionfactorsasas productoverallprimes Q s = Y p 1 1 )]TJ/F80 11.9552 Tf 11.955 0 Td [(p )]TJ/F23 7.9701 Tf 6.586 0 Td [(s ; .2 andthisfactorizationisequivalenttotheuniquefactorizationofintgersintoprimes. Proof. Assumeuniquefactorizationofintegersintoprimes.Then,organizing theintegersintermsoftheirdivisibilitybyaprime p; Q s = X n 1 n )]TJ/F23 7.9701 Tf 6.587 0 Td [(s .3 = X j 0 0 @ X p ~ n p j ~ n )]TJ/F23 7.9701 Tf 6.586 0 Td [(s 1 A .4 = X p ~ n ~ n )]TJ/F23 7.9701 Tf 6.586 0 Td [(s X j 0 p )]TJ/F23 7.9701 Tf 6.586 0 Td [(s j .5 = )]TJ/F80 11.9552 Tf 11.956 0 Td [(p )]TJ/F23 7.9701 Tf 6.586 0 Td [(s )]TJ/F21 7.9701 Tf 6.586 0 Td [(1 X p ~ n ~ n )]TJ/F23 7.9701 Tf 6.586 0 Td [(s .6 TheEulerfactorizationfollowsbyinduction. NowassumetheEulerfactorizationof Q : Foranytwoprimes p;`; )]TJ/F80 11.9552 Tf 11.955 0 Td [(p )]TJ/F23 7.9701 Tf 6.587 0 Td [(s )]TJ/F21 7.9701 Tf 6.587 0 Td [(1 )]TJ/F80 11.9552 Tf 11.955 0 Td [(` )]TJ/F23 7.9701 Tf 6.587 0 Td [(s )]TJ/F21 7.9701 Tf 6.587 0 Td [(1 = X j 0 p )]TJ/F23 7.9701 Tf 6.587 0 Td [(sj X k 0 ` )]TJ/F23 7.9701 Tf 6.587 0 Td [(sk = X j;k 0 p j ` k )]TJ/F23 7.9701 Tf 6.587 0 Td [(s : .7 19

PAGE 25

Iffollowsthat Q = Y p )]TJ/F80 11.9552 Tf 11.955 0 Td [(p )]TJ/F23 7.9701 Tf 6.587 0 Td [(s )]TJ/F21 7.9701 Tf 6.587 0 Td [(1 = X k 0 X primes p 1 ;:::;p k X e 2 Z k p e 1 1 p e k k )]TJ/F23 7.9701 Tf 6.586 0 Td [(s : .8 Then,byassumption, Q s = X n 1 n )]TJ/F23 7.9701 Tf 6.587 0 Td [(s = X k 0 X primes p 1 ;:::;p k X 0
PAGE 26

log 0 : 80 : Thelargestcontributiontothe`errorterm' x )]TJ/F80 11.9552 Tf 11.605 0 Td [(x comesfromthe zerosof ; whichthereforecontaindeepinformationabouttheadditivestructureof theprimes. Justas Q containsinformationabouttheprimesof Z Q ; theDedekindzeta function K ofanumbereld K containsinformationabouttheprimesof O K K with O K asinDenitionDenition1.1.Itisasum 1 overtheidealsof O K denedby K s : = X a N a )]TJ/F23 7.9701 Tf 6.586 0 Td [(s ; where N a : =# O K = a .11 Sinceidealsfactoruniquelyasproductsofprimesin O K ; theproofoftheEuler factorizationof Q canbeadjustedtoshowthat K s = Y p 1 1 )]TJ/F51 11.9552 Tf 11.956 0 Td [( N p )]TJ/F23 7.9701 Tf 6.586 0 Td [(s : .12 Along-termobjectiveoftheauthoristoextendtheworkofthisthesistoEuler factors )]TJ/F80 11.9552 Tf 12.435 0 Td [(p )]TJ/F23 7.9701 Tf 6.587 0 Td [(s )]TJ/F21 7.9701 Tf 6.587 0 Td [(1 ofarbitraryglobaleldsinawayreectingthelocalclasseld theoryofthecorrespondingcompletion. 3.Somephysics Referenceforthissectionare[ 14 25 26 ]. Instatisticalmechanics,onebeginswithacollectionofstatesofasystemandthe collectionoftheirenergies f E s g andassemblesthepartitionfunction Z : = X s e )]TJ/F23 7.9701 Tf 6.586 0 Td [(E s ; .13 where istheinversetemperature,whicharisesnaturallyfromthefundamental assumptionofstatisticalmechanicsandisusedtodenetemperature =1 =: Itis assumedthroughoutthisthesisthattheenergiesaresuchthatthepartitionfunction isaconvergentsum.Saythatthereissomediscretecollectionofstatesofdenite energies E s : Supposethattheseindextheorthonormalbasis s ofaHilbertspace 1 See[ 21 ]foraproofthatthissumconverges. 21

PAGE 27

equippedwithaHamiltonianoperator H suchthat H" s = E s s : Recallthatthe exponentialofanoperatorisdenedbythepowerseries e T : = X n 0 T n n ; .14 whenthisexpressionconvergesintheHilbert-Schmidtnorm,andalsorecallthatthe traceof T isdenedby tr T = X h T" s ;" s i : .15 Usingthefactthattheeigenvaluesof e T areexactlythesetof e where isan eigenvalueof T; tr e )]TJ/F23 7.9701 Tf 6.587 0 Td [(H = X s h e )]TJ/F23 7.9701 Tf 6.587 0 Td [(H s ;" s i = X s e )]TJ/F23 7.9701 Tf 6.587 0 Td [(E s h s ;" s i = X s e )]TJ/F23 7.9701 Tf 6.586 0 Td [(E s = Z : .16 Comparing Z withthezetafunction Q = X n 1 n )]TJ/F23 7.9701 Tf 6.586 0 Td [( ; .17 oneseesthat Z = Q if E s =log s forinteger s 1 : GivenaclassicalHamiltonian H ona2 n -dimensionalphasespacewithlocalcoordinates p i ;q i for1 i n onanopenset U ,Hamilton'sequationsare d dt p i = )]TJ/F80 11.9552 Tf 10.494 8.088 Td [(@H @q i ; d dt q i = @H @p i : .18 ThevectoreldwhoseowisdeterminedbyHamilton'sequationsistheHamiltonian vectoreld X H ,anditsow g t ; givenby g t p;q = p t ;q t ; iscalledtheHamiltonianphaseow.Thisisusedtoevolveintimeaclassicalobservable f t ,denedto beasmoothreal-valuedfunctiononphasespace,bytherule f t p;q = f g t p;q : .19 22

PAGE 28

Thenthetimederivativeof f t is df t dt = df t + s ds s =0 = d f t g s ds s =0 = X H f t : .20 Writing X f g = f f;g g denesthePoissonbracketoftheclassicalobservables f;g: ThisturnsthealgebraofobservablesintoaPoissonalgebra,aLiealgebraforwhich thebracketisaderivation.Insum,inclassicalmechanics d dt f t = f H;f t g .21 Inthequantumcase,wetakeaboverelationasapostulate,usingthedenition f ; g ~ : = i ~ [ ; ] : .22 Hence d dt A t = i ~ [ H;A t ] : .23 Letting U t = e itH= ~ ; weverifythat A t = U t AU t )]TJ/F21 7.9701 Tf 6.587 0 Td [(1 isasolutionto.23,where A 0 = A .Since A = A 0 doesnotdependontime, d dt A t = d dt U t AU t )]TJ/F21 7.9701 Tf 6.586 0 Td [(1 + U t A d dt U t )]TJ/F21 7.9701 Tf 6.586 0 Td [(1 = i ~ HU t AU t )]TJ/F21 7.9701 Tf 6.586 0 Td [(1 + U t A )]TJ/F80 11.9552 Tf 11.727 8.088 Td [(i ~ HU t )]TJ/F21 7.9701 Tf 6.586 0 Td [(1 : Viewing U t asapowerseriesin iH= ~ ; itisclearthat[ H;U t ]=0 ; so d dt A t = i ~ U t [ A;H ] U t )]TJ/F21 7.9701 Tf 6.586 0 Td [(1 = f H;A t g ~ : .24 Thisshowsthatthetimeevolutionofanobservable A isgivenbyconjugatingitby e iHt= ~ : Thetheoryof C -algebrasabstractsallofthis.Inthatframework,asystemof particlesisreplacedbya C -algebra A whosesubalgebraofself-adjointelementsis takentobetheobservablesofthesystem.Thetimeevolutionisarepresentation 23

PAGE 29

of R asautomorphismsof A ,and,wheneverpossible,thisisimplementedusinga representationof A andaHamiltonianoperatorforwhichastraightforwardanalogue ofEquation.21holds. 4.Hilbertspacesand C -algebras ABanachspace A; jjjj isavectorspaceofarbitrarydimensionover R or C completeunderthenorm jjjj : If jj x jj = h x;x i 1 = 2 forsomehermitianinnerproduct on A ,then A iscalledaHilbertspace. AnoperatoronaHilbertspace H isalinearmapof H intoitself,anelementof End H : Themap H )167(! R givenby jj T jj B H : =sup fj Tf j H : j f j H =1 g .25 isanormonthethesubspaceforwhichthesupremumisnite.Theelementsofthis subspace B H arecalledboundedoperators. TheclassofHilbertspacesknownas ` 2 -spaces,denedbelow,arecentralto thisthesis.Thesespacesareimportantbecauseofthefollowingfact:anyinnitedimensionalHilbertspacewithacountableorthonormalbasisisisometricallyisomorphictoevery ` 2 -space.The ` 2 spacesconsistoffunctionsonsomecountableset S withsuitabledecayatinnity. Definition 3.1 Foracountableset S; let ` 2 S bethesubspaceofthecomplex vectorspacewithbasis f s : s 2 S g indexedby S givenby ` 2 S : = X s 2 S c s s : X c 2 s < 1 ; .26 ThisisaBanachspaceundertheobviousadditionandscalingby C : 24

PAGE 30

Weoftenview P c s s 2 ` 2 S asthefunction f : 8 > < > : S )167(! C s 7)167(! c s : .27 Fromthisperspective,the ` 2 norm j f j ` 2 = P j f s j 2 lookslikethenorm j f j L 2 = R X j f j 2 d with X ameasurespace. IfaBanachspace A hasanassociativemultiplicationand jj xy jjjj x jjjj y jj ; then A iscalledaBanachalgebra.A C -algebraisaBanachalgebrawithanabstract notionofadjointness. Definition 3.2 AninvolutiononaBanachalgebra A isanendomorphism x 7)167(! x of A satisfying .28 x + y = x + y xy = y x x = x x = x: Werefertoanalgebranotnecessarilycompletewithaninvolutionasaninvolutivealgebra.A C -algebraisaBanachalgebrawithaninvolutionsatisfyingthe C -identity jj x x jj = jj x jj 2 : C -identity Amorphism ofa C -algebraisamorphismofBanachalgebrasi.e.,acontinuous, linearandmultiplicativemapsuchthat a = a : A C -algebra A neednothaveamultiplicativeidentity,butitisalwayspossible toenlarge A toanalgebrawithaunitcalledaunitalalgebrabytakingthedirect sumwith C anddeningmultiplicationappropriately.Theprototypical C -algebra is B H ; thealgebraofboundedoperatorsontheHilbertspace H withinvolution givenbytheadjoint. 25

PAGE 31

Definition 3.3 Let A beaunital C -algebraandlet a 2 A: Denethespectrum of a by a : = f 2 C : a )]TJ/F80 11.9552 Tf 11.955 0 Td [( 1 isnotinvertible g : .29 Denethespectralradiusof a by a : =sup fj j : 2 a g : .30 Itcanbeshownthat a =lim jj a n jj 1 =n : The C -identityisasurprisinglyrigid constraint,connectingthenormofelementsof A withthespectralradiusandconstrainingtherepresentationsof A: Firstofall,if x 2 A isself-adjointi.e., x = x then jj x jj 2 = jj x x jj = jj x 2 jj : Aninductionargumentshowsthat jj x jj 2 n = jj x 2 n jj ; sothat jj x jj = jj x 2 n jj 1 = 2 n forall n: Itfollowsfromthespectralradiusformulathat jj x jj = x : Sinceany a a 2 A isself-adjoint, jj a jj 2 = jj a a jj = a a : .31 Thisshowsthefollowing. Theorem 3.3 Let A beanalgebrawithaninvolution.Thenthereisatmostone C -algebracontaining A asasubalgebra. Proof. Thenormof a 2 A foranylarger C -algebra e A A isdeterminedby a ; whichdependsonlyon A: Consideranymorphism : A )167(! B ofunital C -algebras.If a )]TJ/F80 11.9552 Tf 12.252 0 Td [( 1isnot invertible,then a )]TJ/F80 11.9552 Tf 11.985 0 Td [( 1isnotinvertible.Thisshowsthat a )]TJ/F80 11.9552 Tf 11.985 0 Td [( 1isnotinvertible, i.e.,that a a : Thisgivesthefollowing. 26

PAGE 32

Proposition 3.4 Anymorphismof C -algebrasisacontraction. Proof. Thisproofrestrictstotheunitalcase.Thentheaboveshows a a : Sincethespectralradiusisthenormonself-adjointelements, jj a a jj = a a a a = jj a a jj ; .32 so jj a jjjj a jjjj a a jjjj a jj 2 ; .33 Sinceinvolutionsareisometries,theleft-handsideisequalto jj a jj 2 : Weseethat isacontraction. Arepresentationofa C -algebraisamorphisminto B H .Fromtheprevioustwo propositions,weseethatanyinvolutivealgebra A canbecompletedtoa C -algebra inthenorm jj f jj C : =sup fjj f jj : isaninvolutiverepresentationof A g : .34 Definition 3.4 Theuniversal C -envelopingalgebra C A ofacomplexinvolutivealgebra A istheclosureof A in jj f jj C : Itmaybethatthisalgebracoincideswiththenormofaparticularrepresentation of A: Theorem19of[ 3 ]showsthatthisisthecaseforacertainHeckealgebra,proving thattheBost-Connessystem C Q coincideswiththeclosureofthatalgebraundera regular ` 2 representation. 5. C -dynamicalsystems IntheHeisenbergformalismdiscussedabove,theobservablesofasystemare operatorsthatevolveintime.Torealize A asanalgebraofobservablesrequires twoadditionalpiecesofinformation:aone-parametergroupofautomorphismsand acovariantrepresentationof A: 27

PAGE 33

Definition 3.5 A C -dynamicalsystemisapair A; ,where A isa C -algebra and isarepresentationof R asautomorphismsofa C -algebra A: Amorecommondenitionlets bearepresentationofanarbitrarylocallycompact group G; butDenition3.5restrictsterminologytothecasewhere G = R ; wherethe actionisinterpretedastheowingoftime. Definition 3.6 Acovariantrepresentationofa C -dynamicalsystem A; over R isapair ;H consistingofanondegenerateinvolutiverepresentation of A onaHilbertspace H andanoperator H on H suchthat t a = e itH a e )]TJ/F23 7.9701 Tf 6.587 0 Td [(itH forall a 2 A;t 2 R : .35 Thisdenitionisextendedtoaninvolutivealgebrawithaone-parameterautomorphismgroupinthenaturalway. 6.Group C -algebras Following[ 13 ],thissectiondescribesthecanonicalassociationofa C -algebra C G toalocallycompactgroup. Givenacommutativering R andadiscretegroup G ,therearetwoequivalent viewsofthegroupalgebra R [ G ].Itcanbethoughtofasthesetofformalsums P g 2 G x g g with x g 2 R and x g =0foralmostall g; andwithmultiplicationgivenby xy = X g x g g X h y h h : = X g;h x g y h gh .36 whichcanberewrittenusingtheobviouschangesofvariablesas xy = X g X h x gh )]TJ/F22 5.9776 Tf 5.756 0 Td [(1 y h g = X g X h x h y h )]TJ/F22 5.9776 Tf 5.756 0 Td [(1 g g .37 28

PAGE 34

Onecanalsoview R [ G ]asthe R -valuedfunctionson G denedby x g = x g : Inthis view,thealgebramultiplicationistheconvolutionproduct xy g = X h x h y h )]TJ/F21 7.9701 Tf 6.587 0 Td [(1 g : .38 The C -algebra C G ofadiscretegroup G isdenedusingthegroupalgebra R [ G ] with R = C : Inthiscase,thereisalwaystheinvolutiongivenby x g = x g )]TJ/F21 7.9701 Tf 6.586 0 Td [(1 : To thatend,therearetwoconstructionsyieldinga C -algebrawhichareconnectedby theconceptofamenability,bothofwhichinvolveclosingtheimageof C [ G ]under representations.Itisalwayspossibletoputa C -algebrastructureon C [ G ]byclosing itinthenorm.34.Ontheotherhand,thereisamuchmoretractablenorm comingfromtheliftoftheleftregularrepresentation of G on ` 2 G to C [ G ];the representation : 8 > < > : G )167(! End ` 2 G g 7)167(! X c h h 7)167(! X c h gh .39 liftstoarepresentation ~ : 8 > < > : C [ G ] )167(! End ` 2 G x = X x g g 7)167(! X c h h x 7)167(! XX c h x g gh ; .40 andtheclosureoftheimageof C [ G ]intheoperatornorm kk B ` 2 G on ` 2 G jj f jj r : = e f B ` 2 G .41 iscalledthereducedgroup C -algebra,andisdenotedby C r G : Thegroupsfor whichtheclosureof C [ G ]in.34isthesameas C r G areexactlytheamenable groups[ 13 ]. Thoughitwillnotbeusedinwhatfollows,itisworthmentioningthatgroup C -algebrasareexamplesofthemoregeneralconstructionofwhatareknownas crossedproducts,sincethedevelopmentofBost-Connessytemsintermsofgroupoid 29

PAGE 35

algebrasofequivalencerelationsleadstodescriptionsofthosesystemascrossedproducts.Crossedproductsareanalogoustosemidirectproducts,wheremultiplication istwistedinoneoftwocomponentsbytheactionoftheothercomponentasautomorphisms.Whentheautomorphismscomefroma C -dynamicalsystem,there isacorrespondencebetweenrepresentationsofthecrossedproductandcovariant representationsofthesystem. 7.Groupoidsandgroupoidalgebras Recalltheobjects A )]TJ/F80 11.9552 Tf 11.867 0 Td [(; )]TJ/F21 7.9701 Tf 7.314 -1.793 Td [(0 and C Q p mentionedinthenalsectionoftheintroduction,tobedenedinChapter4.WithguidancefromtheproofofTheorem 19of[ 3 ],theauthorbelievesthatConjecture4.8canbeprovedusingthenotion ofanamenablegroupoidtoshowthat C Q p istheuniversal C -envelopingalgebra of A )]TJ/F80 11.9552 Tf 11.866 0 Td [(; )]TJ/F21 7.9701 Tf 7.314 -1.794 Td [(0 ; sothatallrepresentationsof A )]TJ/F80 11.9552 Tf 11.866 0 Td [(; )]TJ/F21 7.9701 Tf 7.314 -1.794 Td [(0 liftuniquelytorepresentations of C Q p : Thistheoremwouldshowthataparticularcovariantrepresentation,thatof Proposition4.7,canbeextendedto C Q p ,showingthatthepartitionfunctionof C Q p istheEulerfactorat p of Q : Referencesonthismaterialare[ 1 ],[ 13 ]. Agroupoid G isasmallcategoryallofwhosemorphismsareisomorphisms.A smallcategoryconsistsofaset G ; whoseelementsarecalledtheobjectsof G; and acollectionofarrowsbetweenelementsofOb G : Eacharrow a hasawell-dened source s a andawell-denedtarget t a ,asin s a = a )391()222()222()391(! = t a ; whichareclassicallyreferredtoasthedomainandcodomainor,bysome,range when a isafunctionbetweensets.OnewritesHom x;y forthesetofarrowswith s a = x;t a = y: Thearrowsofacategorymustbecomposablewhenitispossible todoso,inthesensethat a 2 Hom x;y ;b 2 Hom y;z = thereexists b a 2 Hom x;z : .42 30

PAGE 36

Theconditionthateacharrowbeanisomorphismssaysthatif a 2 Hom x;y then thereis a )]TJ/F21 7.9701 Tf 6.586 0 Td [(1 2 Hom y;x suchthat a )]TJ/F21 7.9701 Tf 6.586 0 Td [(1 a =id x and a a )]TJ/F21 7.9701 Tf 6.587 0 Td [(1 =id y : Forgroupoids, itisconvenienttoconsider G asthecollectionofallofitsarrows,embeddingOb G into G asloopsfrom x 2 Ob G toitself. Whenthesetofmorphisms,writtenas G; ofagroupoid G isalocally-compact topologicalspaceandthesource,targetandinversionmapsarecontinuous,oneassociatesaconvolutionalgebrato G andagivensystemofmeasuresonthebersofthe targetmapasfollows.Denotethebersby G x : = t )]TJ/F21 7.9701 Tf 6.586 0 Td [(1 x ; sothat G x isthesetofall arrowspointingto x: Givenasystemofmeasures t a onthe G t a thatiscontinuous andinvariantintheappropriatesense,denetheconvolutionalgebraon C c G : = f f : G )167(! C : f iscontinuousandhascompactsupport g .43 by f 1 f 2 g : = Z G t g f 1 h f 2 h )]TJ/F21 7.9701 Tf 6.586 0 Td [(1 g d t g h : .44 Asinthecaseofgroups,thereisauniversal C -envelopingalgebra C G attached to G; theclosureunderthenorm jj f jj C : =sup fjj f jj : isaninvolutiverepresentationof C c G g : .45 Foreachber G x ,thereisarepresentationof C c G ontheHilbertspace L 2 G x ;d x givenbyz x : 8 > > < > > : C c G )167(! End L 2 G x ;d x f 7)167(! g x f 7)167(! Z G t g f h h )]TJ/F21 7.9701 Tf 6.587 0 Td [(1 g d t g h : .46 Thesegiveanormdenedby jj f jj r : =esssup fjj x f jj L 2 G x ;d x : x 2 Ob G g : .47 31

PAGE 37

Inanalogywiththespecialcasewhere G isagroup,wecallthecompletionof C c G in thenormthereduced C -algebraof G; denotedby C r G : Thetheoryofamenability forgroupoids,describedin[ 1 ],thenshowsthat C G = C r G when G isamenable. 8.vonNeumannalgebras ThoughthenotionofavonNeumannalgebrawillnotbeusedinthisthesis,itis worthbrieymentioningafewofthebasicideashere,sincethesystem C Q p liesinside ofavonNeumannalgebra M andisactedonbytherestrictionofanactionof Z p on M: ThetheoryofvonNeumannalgebrasisoneofthemajorareasofcontemporary mathematicalresearch.AvonNeumannalgebraisbydenitionaunital -algebra ofsome B H satisfyingthreeequivalentconditions.Twooftheseareclosureunder topologieson B H ; andthethirdistherequirementthat M isequaltoitsdouble commutant,wherethecommutantofasubalgebra M B H is M 0 : = f T 2 B H : TS = ST forall S 2 M g .48 andthedoublecommutantis M 00 : = M 0 0 : Itisatheoremthatif M isalready acommutant,than M isavonNeumannalgebra i.e., M 000 = M 0 always.von Neumannalgebrasenjoymanyniceproperties.Chiefamongtheseisthefactthat suchanalgebraisgeneratedbyitsprojections,andthatvonNeumannalgebrascan beclassiedbythestructureofanorderrelationonthesetofprojections.Thereis extensivestructuretheoryforvonNeumannalgebras,sooneishopefulaboutstudying arithemticobjectsinthisnew,highly-developedcontext.. 32

PAGE 38

CHAPTER4 ABost-ConnesSystemfor Q p 1.TheToeplitzalgebra p AsnotedinSection3ofChapter3,theoperator H =log T on k 0 C k with T" k = p k p k satisestrexp )]TJ/F80 11.9552 Tf 9.299 0 Td [(H = )]TJ/F80 11.9552 Tf 10.659 0 Td [(p )]TJ/F23 7.9701 Tf 6.587 0 Td [( )]TJ/F21 7.9701 Tf 6.586 0 Td [(1 : Thischapterbeginswithanalgebra p forwhich H determinesatimeevolutioninthesenseofHamiltonianmechanics. Later,thisisenlargedtocontainasubalgebraisomorphicto C Q p = Z p : DenetheToeplitzalgebra p tobethethecyclicalgebraononegenerator p ; theset p : = n X c n n p : c n 2 C andthesumisnite o .1 withadditionandmultiplicationdenedintheobviousway.Thepair ;e itH ; with H =log T; givenby .2 : 8 > < > : p )167(! End ` 2 p Z > 0 n p 7)167(! k 7)167(! k + n ;T : 8 > < > : ` 2 p Z > 0 )167(! ` 2 p Z > 0 k 7)167(! p k k ; givesacovariantrepresentationof p : Toseethis,onecomputes t n k = T it p n T )]TJ/F23 7.9701 Tf 6.586 0 Td [(it p k .3 = p )]TJ/F23 7.9701 Tf 6.586 0 Td [(itk T it p n k .4 = p )]TJ/F23 7.9701 Tf 6.586 0 Td [(itk T it p k + n .5 = p )]TJ/F23 7.9701 Tf 6.586 0 Td [(itk p it k + n k + n .6 = p itn k + n .7 = p itn n k : .8 33

PAGE 39

Dening t n = p itn n ; thisshowsthat t = t : Fromhereitisclearthat thepairgivesacovariantrepresentation. ThepaperofBostandConnesdescribesanappealingandsimpleobservationthat motivatedtheirinvestigation.Themodicationofthisobservationprovidedbelow showsthattheHamiltonian H hasaninterpretationcomingfrom`secondBosonic quantization,'afunctordenedasfollows.GivenaHilbertspace H ; denoteby S n H theringoforder n symmetrictensors.Denethefunctor S onHilbertspacesand endomorphismby .9 S : 8 > > < > > : H 7)167(! S H : = M n 0 S n H T 7)167(! S T : 1 n 7)167(! T 1 T n Foranyself-adjointoperator T onaHilbertspace,andrecallthat T denotesthe spectrumof T: Asimpleresultof[ 3 ]is T = f primes p 2 Z g S T = Z > 0 : .10 Ourstartingpointisthefollowing: Proposition 4.1 Let T beself-adjointon H andlet p beaprimenumber.Then, T = f p g S T = f p n : n 1 g ; .11 whereforthe = implicationtoholditisnecessarytoassumethateveryeigenvalue of S T hasmultiplicityone. Proof. The= directionholdsforanyeigenvalueof S T isaproductofeigenvaluesof T: Thesameobservationshowsthat p 2 T ; since T S T and S T contains p: If p n 2 T ; then p n hasmultiplicity1asaneigenvalueof S T if andonlyif n =1 : Thisshowsthat T = f p g : 34

PAGE 40

Considerthemultiplication-byp operator T onthetrivialone-dimensionalHilbert space ` 2 f p g = C p : Wehave ` 2 f p g 7)167(! S ` 2 f p g = ` 2 p Z > 0 .12 T : 0 7)167(! p" 0 7)167(! S T : p n 7)167(! p n p n 2 End ` 2 p Z > 0 : .13 Thatis, H = S T: Notethattheprime p labelsthesingletonsetthatindexesthebase ofthe ` 2 -space. 2. ax + b groupsandthehomogeneousspace p Theenlargementof p willbetheanalgebraofoperatorsonahomogeneousspace p ,whichwenowdevelop.Givenacommutativering R; denoteby P R the ax + b group P R : = 1 b a : a 2 R ;b 2 R : .14 Thisiswrittenasasemidirectproduct P R R o R ; .15 wherethemap : R )167(! Aut R requiredforthedenitionofthesemidirect producttakes r 2 R tothecorrespondingmultiplicationmap. Let p = P Q p =P Z p : Thefunctionsonthisspacearecentraltowhatfollows.Recall thatagroup G issaidtoactonatopologicalspace X ontheleftifthereisamap G X 3 g;x 7)167(! g x 2 X .16 suchthat g 1 g 2 x = g 1 g 2 x forall g 1 ;g 2 ;x: Agroupactionissaidtobetransitive ifforeachpairofpoints x;y 2 X thereissome g 2 G suchthat g x = y: The subgroupof G ofelementsxingsomespecied`basepoint' iscalledtheisotropy groupof : 35

PAGE 41

Theorem 4.2[ 4 ],III.4.2Proposition4 Let G beatopologicalgroupacting properlyonatopologicalspaceandlet beapointof X: Let G: denotetheorbitof ; andlet G denotetheisotropysubgroupof : Thenthecanonicalmappingof G=G onto G: isahomeomorphism. Toapplythistheorem,werstlet )]TJ 10.635 0.415 Td [(: = 1 Q Q > 0 ; )]TJ/F21 7.9701 Tf 7.314 -1.793 Td [(0 : = 1 Z p Z p > 0 : .17 Proposition 4.3 Thegroup )]TJ/F93 11.9552 Tf 11.243 0 Td [(actstransitivelyon p : Theisotropysubgroupof thebasepoint P Z p is )]TJ/F21 7.9701 Tf 7.314 -1.794 Td [(0 : Proof. Weshowthat P Q p =)]TJ/F80 11.9552 Tf 21.057 0 Td [(P Z p : Let[ 1 a k ] 2 P Q p : Welookfor r;s;u;z such that 1 a k = 1 r s 1 z u 2 1 Q Q > 0 1 Z p Z p : .18 Theequalityis 1 a k = 1 z + ru su : .19 Itmustbethat j k j p = j s j p and j a j p = j r j p : Itispossibletochoose z;r and u sothat z + ru = a infact,wemayassume z =0andthentochoose s sothat su = k Therefore P Q p =)]TJ/F80 11.9552 Tf 20.432 0 Td [(P Z p : Fromthisitisclearthat)-361(actstransitivelyon P Q p ;writing x;y in P Q p as x = z and y = 0 z 0 in)]TJ/F80 11.9552 Tf 21.258 0 Td [(P Z p ,weseethat 0 )]TJ/F21 7.9701 Tf 6.586 0 Td [(1 x = y: Theisotropy groupof P Z p is )]TJ/F81 11.9552 Tf 9.971 0 Td [( P Q p = QoQ > 0 Z p oZ p = Z p o Z p > 0 : .20 Theactioniswell-behaved,sothetheoremapplies;therefore p )]TJ/F80 11.9552 Tf 7.314 0 Td [(= )]TJ/F21 7.9701 Tf 7.315 -1.793 Td [(0 astopologicalspaces.Wenowstudytheactionof)]TJ/F21 7.9701 Tf 229.594 -1.793 Td [(0 on p : 36

PAGE 42

Doublecosets. Throughoutthissectionwelet : = 1 a k 2 )]TJ/F80 11.9552 Tf 7.315 0 Td [(: .21 Thedoublecosetof is )]TJ/F21 7.9701 Tf 7.315 -1.793 Td [(0 1 a k )]TJ/F21 7.9701 Tf 7.315 -1.793 Td [(0 = 1 Z p Z p > 0 1 a k 1 Z p Z p > 0 = 1 a Z p > 0 + k Z p + Z p k Z p > 0 .22 Itisclearthatthiscosetdependsonlyon j a j p and j k j p : Rightquotients. Therightcoset)]TJ/F21 7.9701 Tf 88.996 -1.793 Td [(0 is )]TJ/F21 7.9701 Tf 7.315 -1.794 Td [(0 : = f 0 : 0 2 )]TJ/F21 7.9701 Tf 7.314 -1.794 Td [(0 g = 1 a + z 0 k s 0 k : z 0 2 Z p ;s 0 2 Z p > 0 = 1 a + k Z p k Z p > 0 .23 Theactionof)]TJ/F21 7.9701 Tf 79.826 -1.793 Td [(0 ontherightofthiscosethasorbit O R a;k = 1 z + as + k Z p k Z p > 0 : z 2 Z p ;s 2 Z p > 0 .24 Itisclearthattheorbitsarenite.Wenowdetermineasetofrepresentativesforthe rightcosetsandndhowthesearepermutedundertheactionof)]TJ/F21 7.9701 Tf 347.935 -1.793 Td [(0 ontherightof )]TJ/F21 7.9701 Tf 7.314 -1.794 Td [(0 : Weseeimmediatelythatwemaytake j k j )]TJ/F21 7.9701 Tf 6.586 0 Td [(1 p asthe2,2-entryofarepresentative. Fixingthenormof k; theclassesarethendeterminedbythe1,2-entry.Wedetermine S R suchthat )]TJ/F21 7.9701 Tf 7.314 -1.793 Td [(0 1 a k )]TJ/F21 7.9701 Tf 7.314 -1.793 Td [(0 = G 2 S R )]TJ/F21 7.9701 Tf 7.315 -1.793 Td [(0 1 j k j )]TJ/F21 7.9701 Tf 6.587 0 Td [(1 p : .25 Realizingthatthesizeof k determineshowmanydigitsinthe p -expansionof z + as arefree,wendthefollowing. 37

PAGE 43

i1 j a j p ; j k j p Since z + as 2 Z p S R = Z p = j k j )]TJ/F21 7.9701 Tf 6.586 0 Td [(1 p Z p : .26 ii j a j p > 1, j a j p j k j p Theproper j a j p -throotsofunity S R = n : )]TJ/F80 11.9552 Tf 5.48 -9.684 Td [(e 2 i N =1if N = j a j p 6 =1if N< j a j p o j a j )]TJ/F21 7.9701 Tf 6.586 0 Td [(1 p Z p = j k j )]TJ/F21 7.9701 Tf 6.587 0 Td [(1 p Z p : .27 iiiOtherwise, S R = f 0 g : .28 Leftquotients. Theleftcoset )]TJ/F21 7.9701 Tf 7.314 -1.793 Td [(0 is )]TJ/F21 7.9701 Tf 7.315 -1.793 Td [(0 : = f 0 : 0 2 )]TJ/F21 7.9701 Tf 7.314 -1.793 Td [(0 g = 1 z 0 + as 0 s 0 k : z 0 2 Z p ;s 0 2 Z p > 0 = 1 a Z p > 0 + Z p k Z p > 0 .29 Theactionof)]TJ/F21 7.9701 Tf 79.826 -1.793 Td [(0 ontherightofthiscosethasorbit O L a;k = 1 a + zk Z p > 0 + Z p k Z p > 0 : z 2 Z p ;s 2 Z p > 0 .30 Inthesameveinasabove,wedetermine S L suchthat )]TJ/F21 7.9701 Tf 7.315 -1.793 Td [(0 1 a k )]TJ/F21 7.9701 Tf 7.315 -1.793 Td [(0 = G 2 S L 1 j k j )]TJ/F21 7.9701 Tf 6.586 0 Td [(1 p )]TJ/F21 7.9701 Tf 7.314 -1.793 Td [(0 : .31 i z;k 2 Z p S L = f 0 g : .32 ii j a j p > 1 j k j p S L = a + Z p : .33 38

PAGE 44

iii j a j p j k j p > 1 S L = j k j p [ j k j )]TJ/F21 7.9701 Tf 6.586 0 Td [(1 p a ]+ j k j )]TJ/F21 7.9701 Tf 6.586 0 Td [(1 p Z p = Z p : .34 withbracketsdenotingthefractionalpart. iv j k j p > 1 ; j k j p j a j p S L = j k j )]TJ/F21 7.9701 Tf 6.587 0 Td [(1 p Z p = Z p : .35 Writing S L = a + j k j )]TJ/F21 7.9701 Tf 6.586 0 Td [(1 p Z p forthesetofall a + r with r 2j k j )]TJ/F21 7.9701 Tf 6.586 0 Td [(1 p Z p consideredas elementsof Q p = Z p givesauniformnotationforalloftheabovefourcases. 3.ThelocalBost-Connessystem C Q p Thereisunitaryrepresentationof)-327(on ` 2 )]TJ/F80 11.9552 Tf 11.866 0 Td [(= )]TJ/F21 7.9701 Tf 7.315 -1.793 Td [(0 givenby .36 : 8 > < > : )]TJ/F81 11.9552 Tf 10.635 0 Td [()167(! Aut ` 2 )]TJ/F80 11.9552 Tf 11.866 0 Td [(= )]TJ/F21 7.9701 Tf 7.314 -1.793 Td [(0 7)167(! u : x 7)167(! x : Let U \051 : = f u : 2 )]TJ/F81 11.9552 Tf 7.314 0 Td [(g : Foreachelementofthecommutant T 2U \051 0 thereisa C -valuedfunctionon)]TJ/F80 11.9552 Tf 145.861 -35.543 Td [(f T : 7)167(!h T" e ; )]TJ/F21 7.9701 Tf 6.586 0 Td [(1 e i ; .37 where e istheidentityof)]TJ/F80 11.9552 Tf 95.824 0 Td [(: Thus f T = t )]TJ/F22 5.9776 Tf 5.756 0 Td [(1 ; where T" e = P x 2 )]TJ/F23 7.9701 Tf 5.288 0 Td [(= )]TJ/F22 5.9776 Tf 5.289 -1.107 Td [(0 t x x ; so T" e = X x 2 )]TJ/F23 7.9701 Tf 5.289 0 Td [(= )]TJ/F22 5.9776 Tf 5.289 -1.107 Td [(0 f T x )]TJ/F21 7.9701 Tf 6.587 0 Td [(1 x .38 39

PAGE 45

and,since T" x = u x T" e ;T actson a = P a x x 2 ` 2 )]TJ/F80 11.9552 Tf 11.867 0 Td [(= )]TJ/F21 7.9701 Tf 7.314 -1.793 Td [(0 ; as Ta = X a u T" e .39 = X X x a u f T x )]TJ/F21 7.9701 Tf 6.587 0 Td [(1 x .40 = X x X a f T x )]TJ/F21 7.9701 Tf 6.586 0 Td [(1 x : .41 Thusitisseenthatthefunction f T issucienttoexpress T: Proposition 4.4 Theadjointof u is u )]TJ/F22 5.9776 Tf 5.756 0 Td [(1 : Thefunctions f T are )]TJ/F21 7.9701 Tf 7.314 -1.793 Td [(0 -bi-invariant, i.e., f T 0 = f T = f T 0 forany 2 )]TJ/F80 11.9552 Tf 7.314 0 Td [(; 0 2 )]TJ/F21 7.9701 Tf 7.314 -1.793 Td [(0 : .42 Proof. With a : = P a x x and b : = P b x x ; h a;u b i = X x X y a x b y h x ;" y i = X x a x b )]TJ/F22 5.9776 Tf 5.756 0 Td [(1 x = X x X y a x b y h )]TJ/F22 5.9776 Tf 5.756 0 Td [(1 x ;" y i = h u )]TJ/F22 5.9776 Tf 5.757 0 Td [(1 a;b i : .43 Tosee)]TJ/F21 7.9701 Tf 43.473 -1.794 Td [(0 -bi-invariance,notethat f T = f T whenever ; 2 )]TJ/F21 7.9701 Tf 7.314 -1.794 Td [(0 ; as, f T = h T" e ;u )]TJ/F22 5.9776 Tf 5.756 0 Td [(1 e i = h Tu e ;u )]TJ/F22 5.9776 Tf 5.756 0 Td [(1 u )]TJ/F22 5.9776 Tf 5.756 0 Td [(1 e i = h T" e ;u )]TJ/F22 5.9776 Tf 5.757 0 Td [(1 e i = f T : .44 The)]TJ/F21 7.9701 Tf 31.379 -1.793 Td [(0 -bi-invariantfunctionson)-326(areexactlythosefunctions ~ f on)-326(liftedfrom functions f on)]TJ/F21 7.9701 Tf 22.837 -1.793 Td [(0 n )]TJ/F80 11.9552 Tf 7.314 0 Td [(= )]TJ/F21 7.9701 Tf 7.314 -1.793 Td [(0 bytherule ~ f x = f X where x isanyelementinthedouble coset X 2 )]TJ/F21 7.9701 Tf 7.315 -1.793 Td [(0 n )]TJ/F80 11.9552 Tf 7.314 0 Td [(= )]TJ/F21 7.9701 Tf 7.314 -1.793 Td [(0 : Henceeach f T canbeexpressedintermsofabasisofindicator 40

PAGE 46

function f 1 X : X 2 )]TJ/F21 7.9701 Tf 7.314 -1.793 Td [(0 n )]TJ/F80 11.9552 Tf 7.314 0 Td [(= )]TJ/F21 7.9701 Tf 7.314 -1.793 Td [(0 g where 1 X g = 8 > > < > > : 1if g 2 X; i.e.,if X =)]TJ/F21 7.9701 Tf 19.74 -1.793 Td [(0 g )]TJ/F21 7.9701 Tf 7.314 -1.793 Td [(0 0otherwise. .45 Assuming f T issupportedinnitely-manycosets,onehas f T = P X f T X 1 X 2 ` 2 )]TJ/F80 11.9552 Tf 11.867 0 Td [(= )]TJ/F21 7.9701 Tf 7.314 -1.794 Td [(0 : Thisbasisallowsonetoreversetheassociation T 7! f T : Definition 4.1 DenetheHeckealgebra A = A )]TJ/F80 11.9552 Tf 11.866 0 Td [(; )]TJ/F21 7.9701 Tf 7.315 -1.793 Td [(0 tobethesetoffunctions f : )]TJ/F81 11.9552 Tf 10.635 0 Td [()167(! C suchthat f 0 = f 0 = f forall 2 )]TJ/F80 11.9552 Tf 7.314 0 Td [(; 0 2 )]TJ/F21 7.9701 Tf 7.314 -1.793 Td [(0 f =0 unless )]TJ/F21 7.9701 Tf 7.314 -1.793 Td [(0 )]TJ/F21 7.9701 Tf 7.314 -1.793 Td [(0 = X j forsomenitecollection f X j g ofdoublecosets. Thishasthestructureofaninvolutivealgebraundertheconvolutionandinvolution denedby f 1 f 2 g : = X h 2 )]TJ/F23 7.9701 Tf 5.288 0 Td [(= )]TJ/F22 5.9776 Tf 5.288 -1.107 Td [(0 f 1 h f 2 h )]TJ/F21 7.9701 Tf 6.587 0 Td [(1 g .46 f g : = f g )]TJ/F21 7.9701 Tf 6.587 0 Td [(1 : .47 Thealgebra A isreferredtoastheHeckealgebraofthepair)]TJ/F80 11.9552 Tf 247.892 0 Td [(; )]TJ/F21 7.9701 Tf 7.314 -1.794 Td [(0 ; andshould bethoughtofasthecompactly-supportedfunctionsonthespaceoforbitsofthe actionof)]TJ/F21 7.9701 Tf 55.764 -1.793 Td [(0 on)]TJ/F21 7.9701 Tf 23.573 -1.793 Td [(0 n )-326(and)]TJ/F80 11.9552 Tf 41.292 0 Td [(= )]TJ/F21 7.9701 Tf 7.314 -1.793 Td [(0 : Proposition 4.5 Let f 2 A .Thenthereisauniqueelement r f 2U \051 0 such that f = h r f e ; )]TJ/F21 7.9701 Tf 6.586 0 Td [(1 e i : .48 Proof. Toeachdoublecoset X weassociate T X denedby h T X 1 e ; 2 e i = 1 X )]TJ/F21 7.9701 Tf 6.587 0 Td [(1 2 1 : .49 41

PAGE 47

The T X areinthecommutantsince,for 2 )]TJ/F80 11.9552 Tf 7.314 0 Td [(; h T X 1 e ; 2 e i = 1 X )]TJ/F21 7.9701 Tf 6.587 0 Td [(1 2 1 .50 = 1 X )]TJ/F21 7.9701 Tf 6.587 0 Td [(1 2 )]TJ/F21 7.9701 Tf 6.586 0 Td [(1 1 .51 = h T X 1 e ; )]TJ/F21 7.9701 Tf 6.586 0 Td [(1 2 e i .52 = h T X 1 e ; 2 e i .53 forany 1 ; 2 : Thelefthandexpressionisequalto h T X e ; )]TJ/F21 7.9701 Tf 6.587 0 Td [(1 2 1 )]TJ/F21 7.9701 Tf 6.587 0 Td [(1 e i ; sowesee that T X e = P x 1 X x x .Theoperator r f isconstructedasfollows.If f X j g is thecollectionofdoublecosetsonwhich f isnonzero,thendene r f by r f : = P X j f X j T X j : Thereisaninvolutiverepresentationof A on ` 2 )]TJ/F80 11.9552 Tf 11.867 0 Td [(= )]TJ/F21 7.9701 Tf 7.314 -1.794 Td [(0 givenby : 8 > > > > < > > > > : A )167(! End ` 2 )]TJ/F80 11.9552 Tf 11.866 0 Td [(= )]TJ/F21 7.9701 Tf 7.314 -1.793 Td [(0 f 7)167(! 0 @ g f 7)167(! X h 2 )]TJ/F23 7.9701 Tf 5.289 0 Td [(= )]TJ/F22 5.9776 Tf 5.289 -1.107 Td [(0 f h h )]TJ/F21 7.9701 Tf 6.587 0 Td [(1 g 1 A : .54 Theclosure A oftheimageof A under withtheobviousinvolutionisa C -algebra. Themap r : A )167(!U \051 0 oftheprecedingpropositionextendsbycontinuitytoa mapdenedon A : Definition 4.2 Thealgebrageneratedbythe r f for f 2 A )]TJ/F80 11.9552 Tf 11.867 0 Td [(; )]TJ/F21 7.9701 Tf 7.314 -1.793 Td [(0 istheBostConnessystemfor Q p ; denotedby C Q p : Presentation. Anyfunction T 2 A operateson A by T : f 7)167(! Tf : = T f: Considerthecasewhere T istheindicatorfunction 1 X 2 A ofthedoubleclass X =)]TJ/F21 7.9701 Tf 20.421 -1.793 Td [(0 n )]TJ/F80 11.9552 Tf 7.314 0 Td [(= )]TJ/F21 7.9701 Tf 7.314 -1.793 Td [(0 : From.22, X =)]TJ/F21 7.9701 Tf 20.421 -1.793 Td [(0 1 p )]TJ/F21 7.9701 Tf 7.314 -1.793 Td [(0 forsome 2 Q p = Z p andsome 2 Z : 42

PAGE 48

With S L oneofthesetsoccurringin.31, 1 X f g = X h 2 )]TJ/F23 7.9701 Tf 5.289 0 Td [(= )]TJ/F22 5.9776 Tf 5.289 -1.107 Td [(0 1 X h f h )]TJ/F21 7.9701 Tf 6.586 0 Td [(1 g = X 2 S L f 1 p )]TJ/F21 7.9701 Tf 6.587 0 Td [(1 g = X 2 S L f 1 )]TJ/F80 11.9552 Tf 9.299 0 Td [(p )]TJ/F23 7.9701 Tf 6.586 0 Td [( p )]TJ/F23 7.9701 Tf 6.587 0 Td [( g : .55 Similarly,observingthat h )]TJ/F21 7.9701 Tf 6.586 0 Td [(1 rangesthrough)]TJ/F21 7.9701 Tf 90.411 -1.793 Td [(0 n )-426(as h rangesthrough)]TJ/F80 11.9552 Tf 90.411 0 Td [(= )]TJ/F21 7.9701 Tf 7.314 -1.793 Td [(0 ; one nds,with S R equaltooneofthesetsoccurringin.25,that 1 X f g = X h 2 )]TJ/F23 7.9701 Tf 5.289 0 Td [(= )]TJ/F22 5.9776 Tf 5.289 -1.107 Td [(0 1 X h )]TJ/F21 7.9701 Tf 6.586 0 Td [(1 f h )]TJ/F21 7.9701 Tf 6.587 0 Td [(1 g = X h 2 )]TJ/F22 5.9776 Tf 5.289 -1.107 Td [(0 n )]TJ/F79 11.9552 Tf 7.281 14.546 Td [(1 X h f hg = X 2 S R f 1 p g ; .56 Denetwoclassesofelementsof A )]TJ/F80 11.9552 Tf 11.867 0 Td [(; )]TJ/F21 7.9701 Tf 7.314 -1.794 Td [(0 :for n 2 Z > 0 ; n = p )]TJ/F23 7.9701 Tf 6.587 0 Td [(n= 2 1 X n ; where X n istheclassof 1 p n in)]TJ/F21 7.9701 Tf 20.971 -1.794 Td [(0 n )]TJ/F80 11.9552 Tf 7.314 0 Td [(= )]TJ/F21 7.9701 Tf 7.314 -1.794 Td [(0 .57 and,for 2 Q p = Z p ; e = 1 X ; where X istheclassof 1 1 )]TJ/F21 7.9701 Tf 7.314 -1.793 Td [(0 in)]TJ/F21 7.9701 Tf 20.971 -1.793 Td [(0 n )]TJ/F80 11.9552 Tf 7.314 0 Td [(= )]TJ/F21 7.9701 Tf 7.315 -1.793 Td [(0 ..58 Proposition 4.6 Thealgebra G generatedbytheelements n and e isequal totheHeckealgebra A C Q p : Thefollowingrelationsgiveapresentationof A : a n n =id b n + m = n m c e = e )]TJ/F80 11.9552 Tf 9.299 0 Td [( d e + = e e e e e =id f e n = n e p n g n e n = p )]TJ/F23 7.9701 Tf 6.587 0 Td [(n P p n = e Proof. Let X beadoublecoset X : =)]TJ/F21 7.9701 Tf 19.739 -1.793 Td [(0 1 p )]TJ/F21 7.9701 Tf 7.314 -1.793 Td [(0 ; with 2 Q p = Z p ; 2 Z ..59 43

PAGE 49

Itwillbeshownthat 1 X 2 G : Itisconvenienttomakesomepreliminarycalculations. First,since j a j p =1and j k j p 1 ; .31shows)]TJ/F21 7.9701 Tf 76.009 -1.793 Td [(0 X n )]TJ/F21 7.9701 Tf 7.314 -1.793 Td [(0 = X n )]TJ/F21 7.9701 Tf 7.314 -1.793 Td [(0 ; sothat S L = f 0 g and.55gives n f g = p )]TJ/F23 7.9701 Tf 6.586 0 Td [(n= 2 X 2 S L f 1 p n )]TJ/F21 7.9701 Tf 6.587 0 Td [(1 g = p )]TJ/F23 7.9701 Tf 6.586 0 Td [(n= 2 f 1 p )]TJ/F23 7.9701 Tf 6.586 0 Td [(n g .60 Similarly,)]TJ/F21 7.9701 Tf 59.341 -1.793 Td [(0 X )]TJ/F21 7.9701 Tf 7.315 -1.793 Td [(0 = X )]TJ/F21 7.9701 Tf 7.314 -1.793 Td [(0 ; sothat S L = f g and e f g = X 2 S L f 1 1 )]TJ/F21 7.9701 Tf 6.586 0 Td [(1 g = f 1 )]TJ/F80 11.9552 Tf 9.298 0 Td [( 1 g : .61 Equations.31and.56leadto n f g = p )]TJ/F23 7.9701 Tf 6.587 0 Td [(n= 2 X 2 Z =p n Z f 1 p n g .62 Compute n e m f g = n e p )]TJ/F23 7.9701 Tf 6.587 0 Td [(m= 2 X 2 Z p =p m f 1 p m g .63 = n p )]TJ/F23 7.9701 Tf 6.586 0 Td [(m= 2 X 2 Z p =p m f 1 p m 1 )]TJ/F80 11.9552 Tf 9.298 0 Td [( 1 g .64 = p )]TJ/F23 7.9701 Tf 6.587 0 Td [(m= 2 p )]TJ/F23 7.9701 Tf 6.587 0 Td [(n= 2 X 2 Z p =p m f 1 p m 1 )]TJ/F80 11.9552 Tf 9.298 0 Td [( 1 1 p )]TJ/F23 7.9701 Tf 6.587 0 Td [(n g .65 = p )]TJ/F21 7.9701 Tf 6.587 0 Td [( m + n = 2 X 2 Z p =p m f 1 )]TJ/F80 11.9552 Tf 11.956 0 Td [( p )]TJ/F23 7.9701 Tf 6.587 0 Td [(n p m )]TJ/F23 7.9701 Tf 6.586 0 Td [(n g : .66 Letting n = and m =0sothat m = 1 id =id ; thisis e f g = p )]TJ/F23 7.9701 Tf 6.586 0 Td [(= 2 f 1 )]TJ/F80 11.9552 Tf 9.299 0 Td [(p )]TJ/F23 7.9701 Tf 6.587 0 Td [( p )]TJ/F23 7.9701 Tf 6.586 0 Td [( g : .67 Letting m = and n =0sothat n =id ; thisis e f g = p )]TJ/F23 7.9701 Tf 6.586 0 Td [(= 2 X 2 Z p =p f 1 )]TJ/F80 11.9552 Tf 11.955 0 Td [( p g = p = 2 f 1 )]TJ/F80 11.9552 Tf 9.299 0 Td [( p g : .68 44

PAGE 50

Consider.55.Itwasshownabovethat S L = + p Z p = Z p withtheconventionthat p Z p = Z p : = Z p when > 0 : When p 2 Z p ; 1 X f g = X = + Z p f 1 )]TJ/F80 11.9552 Tf 9.298 0 Td [(p )]TJ/F23 7.9701 Tf 6.587 0 Td [( p )]TJ/F23 7.9701 Tf 6.586 0 Td [( g = f 1 )]TJ/F80 11.9552 Tf 9.298 0 Td [(p )]TJ/F23 7.9701 Tf 6.587 0 Td [( p )]TJ/F23 7.9701 Tf 6.587 0 Td [( g ; .69 so 1 X = p = 2 e 0 : .70 When p 62 Z p ; 1 X f g = X 2 + p Z p = Z p f 1 )]TJ/F80 11.9552 Tf 9.299 0 Td [(p )]TJ/F23 7.9701 Tf 6.587 0 Td [( p )]TJ/F23 7.9701 Tf 6.587 0 Td [( g : .71 Each p )]TJ/F23 7.9701 Tf 6.587 0 Td [( with 2 + p Z p = Z p isequivalentto in Q p = Z p ; so 1 X f g = p )]TJ/F23 7.9701 Tf 6.587 0 Td [( f 1 )]TJ/F80 11.9552 Tf 9.298 0 Td [( p )]TJ/F23 7.9701 Tf 6.586 0 Td [( g : .72 Hence, 1 X = p = 2 e 0 : .73 Thishasshownthat 1 X 2 G foranydoublecoset X: Sinceeveryfunctionin A canbe writtenasanitelinearcombinationofindicatorfunctions,itmustbethat A = G : Toprovetheidentity a ; rstcompute m n f g = p )]TJ/F23 7.9701 Tf 6.587 0 Td [(n= 2 m f 1 p )]TJ/F23 7.9701 Tf 6.586 0 Td [(n g .74 = p )]TJ/F21 7.9701 Tf 6.587 0 Td [( n + m = 2 X 2 Z p =p m f 1 p )]TJ/F23 7.9701 Tf 6.587 0 Td [(n 1 p m g .75 = p )]TJ/F21 7.9701 Tf 6.587 0 Td [( n + m = 2 X 2 Z p =p m f 1 p m )]TJ/F23 7.9701 Tf 6.586 0 Td [(n g : .76 45

PAGE 51

When m = n; thisbecomes n n f g = p )]TJ/F23 7.9701 Tf 6.586 0 Td [(n X 2 Z p =p n f 1 1 g .77 = p )]TJ/F23 7.9701 Tf 6.586 0 Td [(n X 2 Z p =p n f g .78 = f g .79 since[ 1 1 ] 2 )]TJ/F21 7.9701 Tf 7.314 -1.794 Td [(0 for 2 Z p : Therefore n actsastheidentity. For b ; n m f g = f 1 p )]TJ/F23 7.9701 Tf 6.586 0 Td [(m 1 p )]TJ/F23 7.9701 Tf 6.586 0 Td [(n g = f 1 p )]TJ/F21 7.9701 Tf 6.587 0 Td [( n + m g = n + m f g : .80 For c ; e f g = X h 2 S R 1 X h f hg .81 where S R isinthecase ii of.25with j k j p =1.Noteherethat X isthedouble classnotofthematrix 1 1 ,butoftherightclass 1 1 )]TJ/F21 7.9701 Tf 7.315 -1.793 Td [(0 : From.29,itisclear thatthereisonlyoneclass,theclassof 1 1 : Hence e f g = f 1 1 g = e )]TJ/F80 11.9552 Tf 9.299 0 Td [( f g : .82 For d ; e e f g = e f 1 )]TJ/F80 11.9552 Tf 9.298 0 Td [( 1 g = f 1 )]TJ/F80 11.9552 Tf 9.298 0 Td [( 1 1 )]TJ/F80 11.9552 Tf 9.299 0 Td [( 1 g = e + f g .83 For e ; since e istheidentity, e e = e )]TJ/F80 11.9552 Tf 9.299 0 Td [( e = e )]TJ/F80 11.9552 Tf 11.955 0 Td [( = e =id : .84 46

PAGE 52

For f ; .67gives n e p n f g = p )]TJ/F23 7.9701 Tf 6.586 0 Td [(n= 2 f 1 )]TJ/F80 11.9552 Tf 9.299 0 Td [( p )]TJ/F23 7.9701 Tf 6.586 0 Td [(n g .85 = p )]TJ/F23 7.9701 Tf 6.586 0 Td [(n= 2 f 1 p )]TJ/F23 7.9701 Tf 6.586 0 Td [(n 1 )]TJ/F80 11.9552 Tf 9.298 0 Td [( 1 g .86 = e n f g : .87 For g ; from.63with n = m; n e n f g = p )]TJ/F23 7.9701 Tf 6.586 0 Td [(n X 2 Z p =p n f 1 )]TJ/F80 11.9552 Tf 11.955 0 Td [( p )]TJ/F23 7.9701 Tf 6.587 0 Td [(n 1 g .88 = p )]TJ/F23 7.9701 Tf 6.586 0 Td [(n X 2 Z p =p n f 1 )]TJ/F80 11.9552 Tf 11.955 0 Td [( p )]TJ/F23 7.9701 Tf 6.587 0 Td [(n 1 g : .89 Thenumbers )]TJ/F80 11.9552 Tf 12.953 0 Td [( p )]TJ/F23 7.9701 Tf 6.587 0 Td [(n with 2 Z p =p n areexactlythose ~ 2 Q p = Z p suchthat p n ~ = )]TJ/F80 11.9552 Tf 9.298 0 Td [(; so n e n f g = p )]TJ/F23 7.9701 Tf 6.587 0 Td [(n X p n = f 1 )]TJ/F80 11.9552 Tf 9.299 0 Td [( 1 g = p )]TJ/F23 7.9701 Tf 6.586 0 Td [(n X p n = e f g : .90 Thecomputationoftheorbitsfortheactionsof)]TJ/F21 7.9701 Tf 254.783 -1.793 Td [(0 on)]TJ/F21 7.9701 Tf 23.271 -1.793 Td [(0 n )-301(and)]TJ/F80 11.9552 Tf 40.689 0 Td [(= )]TJ/F21 7.9701 Tf 7.314 -1.793 Td [(0 showsthat )]TJ/F21 7.9701 Tf 7.314 -1.793 Td [(0 isanalmost-normal 1 subgroupof)]TJ/F80 11.9552 Tf 71.096 0 Td [(; andthusthatProposition4of[ 3 ]appliesto showthatthereisaone-parametergroup t ofautomorphismsof A t f g = L g R g )]TJ/F23 7.9701 Tf 6.586 0 Td [(it f ; .91 where L resp. R denotesthenumberofleftresp.rightcosetsoccurringinthe decompositionof)]TJ/F21 7.9701 Tf 100.123 -1.794 Td [(0 g )]TJ/F21 7.9701 Tf 7.314 -1.794 Td [(0 : Theabovecomputationsofthedecompositionsofdouble 1 Asubgroup)]TJ/F22 5.9776 Tf 51.768 -1.107 Td [(0 )-389(issaidtobealmost-normalif)]TJ/F22 5.9776 Tf 127.021 -1.107 Td [(0 )]TJ/F22 5.9776 Tf 5.289 -1.107 Td [(0 canbewrittenasaunionofnitely-manyrightorleft cosetsof)-354(forall 2 47

PAGE 53

cosetsshowthat t n g = )]TJ/F80 11.9552 Tf 5.479 -9.684 Td [(p p n )]TJ/F23 7.9701 Tf 6.586 0 Td [(it n g .92 t e g = p )]TJ/F51 11.9552 Tf 11.955 0 Td [(1 p j j p )]TJ/F23 7.9701 Tf 6.586 0 Td [(it e : .93 Herethereisanimportantdierencebetween C Q and C Q p : In[ 3 ],theisotropy groupusedinthedecompositionofthehomogeneousspaceis P + Q P A f = Zo 1 : .94 Inthisthesis,theisotropygroupusedinthedecompositionofthehomogeneousspace p is P + Q P Z p = Z p o Z p > 0 : .95 Thefactthattherstsemidirectproductinvolvesatrivialgroupismanifestedinthe timeevolutionofthesystems;in C Q p ; theisometriesindexedby Q p = Z p evolveintime while,in C Q ; theisometriesindexedby Q = Z arexedintime.Thuscompletionof Q atitsnonarchimedeanplacesleadstonewdynamics. 4.Representations ThepresentationgiveninProposition4.6isusedtondacovariantrepresentation of A .Thisisconjecturedtoextendtoarepresentationof C Q p : Proposition 4.7 Foreach 2 Gal Q tot p = Q p Z p ; thereisacovariantrepresentation ;H of A on ` 2 p Z > 0 satisfying n k = n + k .96 e k = e 2 ip k k .97 H" k =log p k k : .98 48

PAGE 54

Proof. Weconsider = id ; whereidisidentityelementofGal Q tot p = Q p : Dene on n and e asinthestatementoftheproposition,andextendittoamorphism ofinvolutivealgebrasinthenaturalway.Theaboveproofofthepresentationshowed thatany T 2 C Q p isalinearcombinationofnitely-manyindicatorfunctions f 1 X j g : Sinceforany f 2 ` 2 p Z > 0 j Tf j ` 2 = X c j 1 X j f ` 2 X j c j 1 X j f j 2 ; .99 toshowthat T isbounded,i.e.,that j Tf j isniteforany f; itsucestoconsider T = 1 X forany X 2 )]TJ/F21 7.9701 Tf 7.314 -1.793 Td [(0 n )]TJ/F80 11.9552 Tf 7.314 0 Td [(= )]TJ/F21 7.9701 Tf 7.315 -1.793 Td [(0 : Equations.70and.73showthat 1 X = n e m forsome n;m; and withoneof n;m equaltozero.Usingthepropertiesofnorms andthefactthattheinvolutionon B H preservesnorms, jj n e m jjjj n jjjj e jjjj m jj : .100 intheoperatornorm jj T jj B ` 2 p Z > 0 : =sup fj Tf j ` 2 p Z > 0 : j f j ` 2 p Z > 0 =1 g : .101 Itsucestoshowthat e and n arebounded.Butthisisimmediate,as j e f j ` 2 = e X f k k ` 2 .102 = X f k e 2 ip k k ` 2 .103 = X j f k e 2 ip k j 2 .104 = X j f k j 2 .105 = j f j ` 2 .106 and j n f j ` 2 = n X f k k ` 2 = X f k n + k ` 2 = X j f k j 2 = j f j ` 2 .107 49

PAGE 55

Thus isa -homomorphismof A into B H : Theremainderoftheproofshows that n and e satisfytherelationsofProposition4.6. For a ; wecompute h n n j ;" k i = h n j ; n k i = h j + n ;" k + n i = h j ;" k i = h id j ;" k i : .108 Therefore n n actsastheidentity. For b ; n + m k = k + n + m = m k + n = m n k : .109 For c ; sincetheinnerproductishermitian, h e j ;" k i = h j ; e k i = e )]TJ/F21 7.9701 Tf 6.587 0 Td [(2 ip k h j ;" k i : .110 Thisiszerounless j = k; inwhichcase h e j ;" k i = h e )]TJ/F21 7.9701 Tf 6.587 0 Td [(2 ip k j ;" k i = h e )]TJ/F80 11.9552 Tf 9.299 0 Td [( j ;" k i : .111 Therelation d followsimmediatelyfromthefactthat e a + b = e a e b : Forrelation e ; e e k = e )]TJ/F80 11.9552 Tf 9.298 0 Td [( e 2 ip k k = e 2 ip k e )]TJ/F21 7.9701 Tf 6.586 0 Td [(2 ip k k = k =id k : .112 Forrelation f ; e n k = e 2 ip n + k k + n = n e 2 ip k p n k = n e p n k : .113 For g ; rstnotethat,using a n n =id= n n n + k = n n n k = n k = n + k = n n =id : .114 50

PAGE 56

Therelation f gives n e n k = p )]TJ/F23 7.9701 Tf 6.586 0 Td [(n n n k = p )]TJ/F23 7.9701 Tf 6.586 0 Td [(n k = e 2 ip k )]TJ/F24 5.9776 Tf 5.756 0 Td [(n k : .115 Relation g followssincethereare p n -many 2 Q p = Z p suchthat p )]TJ/F23 7.9701 Tf 6.587 0 Td [(n = Carefullytrackingtheabovedetails,itisclearthatthisproofcanbemodiedto thegeneralcaseof : Conjecture 4.8 Anyrepresentationof A )]TJ/F80 11.9552 Tf 11.867 0 Td [(; )]TJ/F21 7.9701 Tf 7.314 -1.793 Td [(0 admitsauniquelifttoarepresentationoftheclosure A )]TJ/F80 11.9552 Tf 11.866 0 Td [(; )]TJ/F21 7.9701 Tf 7.314 -1.793 Td [(0 = C Q p : Itsucestoshowthat jj f jj C = jj f jj C Q p ; sinceanyrepresentationof A liftstoa representationoftheclosureunder jjjj C : Theinequality jj f jj C jj f jj C r obviously holds,sothegoalistoprovethereverseinequality.TheexamplegiveninTheorem 19of[ 3 ]suggestsstudyingtheconvolutionalgebrasassociatedtothegroupoid G = f z;r 2 Z p Q > 0 : zr 2 Z p g .116 ofarrowsbetween p -adicintegersthatdierbyapositiverationalscalar,withcompositiongivenby z;r 1 z;r 2 = z;r 1 r 2 : Theauthorintendstoshowthat G ismeasurewiseamenable,andthentoapplyTheorem6.1.8of[ 1 ]toshowthat C r G = C G : Then,theauthorwillndanembedding A C c G suchthat jj f jj r =esssup fjj f jj : isaninvolutiverepresentationof C c G g = jj f jj C Q p .117 for f 2 A ; where jj f jj r isthenormofequation.47.Thiswouldprovethetheorem. 51

PAGE 57

ConditionalTheorem 4.9 AssumingConjecture4.8,thepartitionfunctionof C Q p is E p : Proof. Theprecedingtworesultsgiveacovariantrepresentationof C Q p with Hamiltonian H equaltothatoftheToeplitzalgebra p introducedatthebeginning ofthechapter. 5.Anactionof Z p Thehomogeneousspace p P Q p =P Z p isofcourseactedonby P Q p ; andthus alsobyanyofitsquotients.Considerthesubgroup P + Q p : = Q p oQ > 0 ; whichacts transitivelyon p becauseitcontains P + Q : Thedecomposition Q p = Q > 0 Z p gives P Q p =P + Q p = 1 Q p Q p 1 Q p Q > 0 1 Z p Z p : .118 Thereisamap : 8 > < > : Z p )167(! Aut U P + Q 0 u 7)167(! x 7)167(! uxu x 2 P + Q 0 : .119 Toshowthat reallydoestake Z p toautomoprhismsof U P + Q 0 ; rstlet u : = 1 a r 2 P Q p T : = 1 s t 2 P + Q : .120 Usingthefactthat u = u )]TJ/F21 7.9701 Tf 6.587 0 Td [(1 ,compute u x T = 1 a r x 1 )]TJ/F80 11.9552 Tf 9.299 0 Td [(ar )]TJ/F21 7.9701 Tf 6.587 0 Td [(1 r )]TJ/F21 7.9701 Tf 6.586 0 Td [(1 1 s t .121 = 1 a r x 1 rs + a )]TJ/F80 11.9552 Tf 11.955 0 Td [(at t 1 )]TJ/F80 11.9552 Tf 9.299 0 Td [(ar )]TJ/F21 7.9701 Tf 6.587 0 Td [(1 r )]TJ/F21 7.9701 Tf 6.586 0 Td [(1 .122 = 1 a r 1 rs + a )]TJ/F80 11.9552 Tf 11.955 0 Td [(at t x 1 )]TJ/F80 11.9552 Tf 9.299 0 Td [(ar )]TJ/F21 7.9701 Tf 6.587 0 Td [(1 r )]TJ/F21 7.9701 Tf 6.586 0 Td [(1 .123 = 1 s t 1 a r x 1 )]TJ/F80 11.9552 Tf 9.299 0 Td [(ar )]TJ/F21 7.9701 Tf 6.587 0 Td [(1 r )]TJ/F21 7.9701 Tf 6.587 0 Td [(1 .124 = T u x : .125 52

PAGE 58

Thesubalgebra C p Z > 0 C Q p P + Q 0 isxedby : u n = u n u )]TJ/F21 7.9701 Tf 6.586 0 Td [(1 .126 = 1 u 1 p n 1 u )]TJ/F21 7.9701 Tf 6.587 0 Td [(1 .127 = 1 p n .128 = n ; .129 andso commuteswith t onthissubalgebra. Therestrictionof to C Q p = Z p C Q p P + Q 0 isdeterminedby u e = ue u )]TJ/F21 7.9701 Tf 6.587 0 Td [(1 .130 = 1 u 1 1 1 u )]TJ/F21 7.9701 Tf 6.587 0 Td [(1 .131 = 1 u )]TJ/F21 7.9701 Tf 6.586 0 Td [(1 1 .132 = e u )]TJ/F21 7.9701 Tf 6.587 0 Td [(1 : .133 Sincetheactionof Z p on Q p isnorm-preserving,itisclearfrom.92that commuteswiththerestrictionofthetimeevolutionto C Q p = Z p : Since C Q p isgenerated bythe e andthe n ,thisshowsthat C Q p isstableunder ; andthatthetime evolutioncommuteswith ; i.e.,thatthedynamicsof C Q p preservea Z p symmetry. Recallingtheisomorphism Z p Gal Q tot p = Q p ; .134 oneidentiesasymmetryof C Q p withtheramiedpartofGal Q ab p = Q p : 53

PAGE 59

PREFACE54 6.Futuredirections Thisthesishasintroducedapairofgroups)]TJ/F21 7.9701 Tf 243.784 -1.794 Td [(0 )-460(forwhichthereisstrong evidenceofarelationshipbetweentheHeckealgebra A andtheclasseldtheory of Q p : Thereaderisawarethatakeyresultinthistheoryisleftasaconjecture;a rststepinadvancingthisworkistoproveConjecture4.8.Agoodstartingplacefor thisistoshowthatthegroupoid.116isamenableandusethistoshowthat C Q p coincideswiththeuniversal C -envelopingalgebraof A )]TJ/F80 11.9552 Tf 11.866 0 Td [(; )]TJ/F21 7.9701 Tf 7.314 -1.794 Td [(0 : Beyondthistherearemanyotherpossiblecontinuationsofthiswork.Since [ 6 7 ],mostpapersintheareahavedevelopedBost-Connessystemsas C -algebras ofgroupoidsofequivalencerelations.Thisviewpointwassolidiedin[ 12 ],which giveswhathasbecometheaccepteddenitionforBost-Connessystemsforarbitrary numberelds.Theauthorhopestoshowthat C Q p canbeobtainedinthisframework. Thepaper[ 5 ]developsa p -adictheoryofBost-Connessystems,butthisseems toonlyconnectwith Q un p : Apossiblenextstepistoconsider C Q p astheramied counterpartofthat. Anotherpossiblecontinuation,discussedbrieyintheintroduction,istodevelop aBost-Connessystemforarbitrarynumberelds.Thoughthereisasatisfactory explicitclasseldtheoryforlocalelds,itisnotobvioustotheauthorhowthe constructionsofthisthesiswillgeneralize.Itmaybethattheframeworkofgroupoid C -algebraswillmakethisgeneralizationeasier. Finally,thereisthequestionofstudyingandclassifyingthestatesof C Q p andof whatevergeneralizationsmaybefound.Tothatend,therearemanyresultsof[ 3 ]to provideguidance.

PAGE 60

Bibliography [1]C.Anantharaman-DelarocheandJ.Renault, Amenablegroupoids ,MonographiesdeL'Enseignement Mathematique[MonographsofL'EnseignementMathematique],vol.36,L'EnseignementMathematique,Geneva, 2000,WithaforewordbyGeorgesSkandalisandAppendixBbyE.Germain. [2]JohnBaez, Thisweek'sndsinmathematicalphysics,week218 ,2005,Availableat http://math.ucr.edu/home/baez/week218.html. [3]J.-B.BostandA.Connes, Heckealgebras,typeIIIfactorsandphasetransitionswithspontaneoussymmetry breakinginnumbertheory ,SelectaMath.N.S. 1 ,no.3,411{457. [4]NicolasBourbaki, Generaltopology.Chapters1{4 ,ElementsofMathematicsBerlin,Springer-Verlag,Berlin, 1998,TranslatedfromtheFrench,Reprintofthe1989Englishtranslation. [5]AlainConnesandCaterinaConsani, Onthearithmeticofthebc-system ,,arXiv:1103.4672v1[math.QA]. [6]AlainConnes,MatildeMarcolli,andNiranjanRamachandran, KMSstatesandcomplexmultiplication ,Selecta Math.N.S. 11 ,no.3-4,325{347. [7] KMSstatesandcomplexmultiplication.II ,OperatorAlgebras:TheAbelSymposium2004,AbelSymp., vol.1,Springer,Berlin,2006,pp.15{59. [8]AntonDeitmarandSiegfriedEchterho, Principlesofharmonicanalysis ,Universitext,Springer,NewYork, 2009. [9]DavidS.DummitandRichardM.Foote, Abstractalgebra ,thirded.,JohnWiley&SonsInc.,Hoboken,NJ, 2004. [10]PeterA.Fillmore, Auser'sguidetooperatoralgebras ,CanadianMathematicalSocietySeriesofMonographs andAdvancedTexts,JohnWiley&SonsInc.,NewYork,1996,AWiley-IntersciencePublication. [11]PaulGarrett, Riemann'sexplicit/exactformula ,Availableontheauthor'swebsite. [12]EugeneHaandFredericPaugam, Bost-Connes-MarcollisystemsforShimuravarieties.I.Denitionsandformal analyticproperties ,IMRPInt.Math.Res.Pap.,no.5,237{286. [13]MasoudKhalkhali, Basicnoncommutativegeometry ,EMSSeriesofLecturesinMathematics,EuropeanMathematicalSocietyEMS,Zurich,2009. [14]CharlesKittelandHerbertKroemer, Thermalphysics ,2ed.,W.H.Freeman,1980. [15]SergeLang, Realandfunctionalanalysis ,thirded.,GraduateTextsinMathematics,vol.142,Springer-Verlag, NewYork,1993. [16]Yu.I.Manin, RealmultiplicationandnoncommutativegeometryeinAlterstraum ,ThelegacyofNielsHenrik Abel,Springer,Berlin,2004,pp.685{727. [17]MatildeMarcolli, Arithmeticnoncommutativegeometry ,UniversityLectureSeries,vol.36,AmericanMathematicalSociety,Providence,RI,2005,WithaforewordbyYuriManin. 55

PAGE 61

BIBLIOGRAPHY56 [18] Solvmanifoldsandnoncommutativetoriwithrealmultiplication ,Commun.NumberTheoryPhys. 2 ,no.2,421{476. [19] Noncommutativegeometryandarithmetic ,ProceedingsoftheInternationalCongressofMathematicians. VolumeIIINewDelhi,HindustanBookAgency,2010,pp.2057{2077. [20]JamesS.Milne, Classeldtheoryv4.01 ,2011,Availableatwww.jmilne.org/math/,pp.279+viii. [21] Algebraicnumbertheoryv3.04 ,2012,Availableatwww.jmilne.org/math/,p.160. [22]DinakarRamakrishnanandRobertJ.Valenza, Fourieranalysisonnumberelds ,GraduateTextsinMathematics,vol.186,Springer-Verlag,NewYork,1999. [23]WalterRudin, Realandcomplexanalysis ,thirded.,McGraw-HillBookCo.,NewYork,1987. [24]JerryShurman, Sketchoftheriemann-vonmangoldtexplicitformula ,Availableat http://people.reed.edu/jerry/361/lectures/rvm.pdf. [25]EliasM.SteinandRamiShakarchi, Realanalysis ,PrincetonLecturesinAnalysis,III,PrincetonUniversityPress, Princeton,NJ,2005,Measuretheory,integration,andHilbertspaces. [26]LeonA.Takhtajan, Quantummechanicsformathematicians ,GraduateStudiesinMathematics,vol.95,AmericanMathematicalSociety,Providence,RI,2008.


ERROR LOADING HTML FROM SOURCE (http://ncf.sobek.ufl.edu//design/skins/UFDC/html/footer_item.html)