ERROR LOADING HTML FROM SOURCE (http://ncf.sobek.ufl.edu//design/skins/UFDC/html/header_item.html)

Sensitivity Analysis of Biochemical Networks

Permanent Link: http://ncf.sobek.ufl.edu/NCFE004509/00001

Material Information

Title: Sensitivity Analysis of Biochemical Networks Computer Algebra Application to the Escherichia Coli Trypyophan Operon
Physical Description: Book
Language: English
Creator: Henderson, Casey
Publisher: New College of Florida
Place of Publication: Sarasota, Fla.
Creation Date: 2011
Publication Date: 2011

Subjects

Subjects / Keywords: Operons are collections of genetic elements including protein coding genes and regulatory binding sites. Operon dynamics can be described by a system of differential equations which define a set of relationships among variables and parameters. The collect
Genre: bibliography   ( marcgt )
theses   ( marcgt )
government publication (state, provincial, terriorial, dependent)   ( marcgt )
born-digital   ( sobekcm )
Electronic Thesis or Dissertation

Notes

Statement of Responsibility: by Casey Henderson
Thesis: Thesis (B.A.) -- New College of Florida, 2011
Electronic Access: RESTRICTED TO NCF STUDENTS, STAFF, FACULTY, AND ON-CAMPUS USE
Bibliography: Includes bibliographical references.
Source of Description: This bibliographic record is available under the Creative Commons CC0 public domain dedication. The New College of Florida, as creator of this bibliographic record, has waived all rights to it worldwide under copyright law, including all related and neighboring rights, to the extent allowed by law.
Local: Faculty Sponsor: Yildirim,Necmettin

Record Information

Source Institution: New College of Florida
Holding Location: New College of Florida
Rights Management: Applicable rights reserved.
Classification: local - S.T. 2011 H49
System ID: NCFE004509:00001

Permanent Link: http://ncf.sobek.ufl.edu/NCFE004509/00001

Material Information

Title: Sensitivity Analysis of Biochemical Networks Computer Algebra Application to the Escherichia Coli Trypyophan Operon
Physical Description: Book
Language: English
Creator: Henderson, Casey
Publisher: New College of Florida
Place of Publication: Sarasota, Fla.
Creation Date: 2011
Publication Date: 2011

Subjects

Subjects / Keywords: Operons are collections of genetic elements including protein coding genes and regulatory binding sites. Operon dynamics can be described by a system of differential equations which define a set of relationships among variables and parameters. The collect
Genre: bibliography   ( marcgt )
theses   ( marcgt )
government publication (state, provincial, terriorial, dependent)   ( marcgt )
born-digital   ( sobekcm )
Electronic Thesis or Dissertation

Notes

Statement of Responsibility: by Casey Henderson
Thesis: Thesis (B.A.) -- New College of Florida, 2011
Electronic Access: RESTRICTED TO NCF STUDENTS, STAFF, FACULTY, AND ON-CAMPUS USE
Bibliography: Includes bibliographical references.
Source of Description: This bibliographic record is available under the Creative Commons CC0 public domain dedication. The New College of Florida, as creator of this bibliographic record, has waived all rights to it worldwide under copyright law, including all related and neighboring rights, to the extent allowed by law.
Local: Faculty Sponsor: Yildirim,Necmettin

Record Information

Source Institution: New College of Florida
Holding Location: New College of Florida
Rights Management: Applicable rights reserved.
Classification: local - S.T. 2011 H49
System ID: NCFE004509:00001


This item is only available as the following downloads:


Full Text

PAGE 1

SensitivityAnalysisofBiochemicalNetworks: ComputerAlgebraApplicationtothe Escherichiacoli Tryptophan Operon by CaseyHenderson AThesis SubmittedtotheDivisionofNaturalSciences NewCollegeofFlorida inpartialfulllmentoftherequirementsforthedegree BachelorofArts UnderthesponsorshipofProfessorNecmettinYildirim Sarasota,Florida April,2011

PAGE 2

Acknowledgements IwouldliketothankProfessorNecmettinYildirimforhisinstructioninprogramming,modeling,biologyandmanymoresubjects.Heintroducedmetotheeldof MathematicalBiologyandprovideddirectionforthisproject.Iwouldliketothank ProfessorPatMcDonald,whohasprovidedguidancefrommyrstyearthroughmy lastmonth.IthankJaneandAllanClaymanfortheirinspiringsupportthroughout mylife.IthankmyMomforintroducingmetothewonderfulcommunityatNew Collegeandencouragingmealongtheway.

PAGE 3

SensitivityAnalysisofBiochemicalNetworks: ComputerAlgebraApplicationtothe Escherichiacoli TryptophanOperon CaseyHenderson NewCollegeofFlorida,2011 ABSTRACT Operonsarecollectionsofgeneticelementsincludingproteincodinggenesandregulatorybindingsites.Operondynamicscanbedescribedbyasystemofdi!erential equationswhichdeneasetofrelationshipsamongvariablesandparameters.The collectionofequationsmodelsregulationofgeneexpressioninacell.Mathematical techniques,suchassensitivityanalysis,canbeusedtoinvestigatepossibleregulatory mechanismsinthesesimulatedbiologicalnetworks.Sensitivityanalysisexploreshow thenetworkvariables,inthiscaseconcentrations,respondtosmallchangesinnetworkparametervalues,suchasreactionrates.TheComputerAlgebraSystemMaple generatesthesensitivityequations,whicharetransferredtoMatlab,toperformsensitivityanalysis.Thisthesisprovidesananalysisoflocalparametersensitivityinthe Mackey-Santillanmodelof E.coli tryptophanoperonusingcomputer-aidedcalculus.Themainresultisademonstrationthattryptophanconcentrationisthemost sensitivevariablewithtranscriptionalattenuationasthemostsensitiveparameter. AssistantProfessorofMathematicsNecmettinYildirim DivisionofNaturalSciences

PAGE 4

Contents ListofFiguresv ListofTablesvi Chapter1.Introduction1 Chapter2.MathModeling5 1.Introduction5 2.MassActionKinetics6 3.StabilityAnalysis8 4.EnzymeKinetics9 Chapter3.CellBiology13 1.EnzymeKineticsandBiochemistry13 2.TranscriptionalLevelControlofGeneExpression14 3.Operons16 Chapter4.TheTryptophanOperon18 1.TheModel19 2.TheMackey-SantillanModel20 Chapter5.SensitivityAnalysis22 1.ImplementationoftheAnalysis23 2.Results24 Chapter6.Discussion35 1.FurtherResearchandDirection36 iii

PAGE 5

AppendixA.EquationsandParameterDenitions38 1.SimpliedMackeySantillanModeloftheTrpOperon38 AppendixB.Code40 1.MapleSensitivityMatrixBuilder40 2.MatlabDriver42 3.MatlabModelEquations47 Bibliography57 iv

PAGE 6

ListofFigures 1Concentrationsfortwovaluesofparameterd6 2GraphofthereactionvelocityforthemodelgivenbyMichaelisandMenten11 3DiagramoftranscriptionalattenuationintheTRPoperon16 4Diagramofthetryptophanoperon17 5Renderingofthetryptophanoperonrepressor,trpR19 6TimeseriesandparametersensitivityforvariableOf26 7TimeseriesandparametersensitivityforvariableMf27 8TimeseriesandparametersensitivityforvariableE28 9TimeseriesandparametersensitivityforvariableE29 10Bargraphofthesensitivityscores32 11Tryptophanconcentrationsteadystatewithrespecttomaximum transcriptionalattenuationrate33 12Tryptophanconcentrationsteadystatewithrespecttotrp-trpR disassociationrate34 v

PAGE 7

ListofTables 1TableofNumericalResults31 2ParameterDenitions39 vi

PAGE 8

CHAPTER1 Introduction Thisthesisexploresabiologicalsystembyapplyingmathematicaltools,addingto theburgeoningeldofmathematicalbiology.Thegrowthofthisinterdisciplinaryeld comesfromadvancesincomputingtechnologythathavebeenpairedwithmolecular biologybreakthroughssuchassequencingDNA[ 17 ].Thesetwindevelopmentscan betracedtothe19thcenturywithCharlesBabbageandLouisPasteur,andareset tocontinueacceleratingfortheforeseeablefuture[ 18 ].Combined,theyopennew avenuesforresearchandholdthepromiseofbiologicalinsightonoldproblemsas well[ 31 ]. Vastamountsofdataarebeingproducedbyhigh-throughputmolecularbiology researchsuchasproteomicsandgenomics[ 21 ].Thevolumeofdataisimmense andtherateatwhichitgrowsisincreasing.In2008therewereanestimated92 millionindividualsequencesandthedoublingtimethenwas30months[ 2 ].This createsademandforbothresearchersandtechniquestoanalyzethisunprecedented scaleofdata.Toolsneedtobedevelopedtograpplewiththisexponentialgrowth andunderstandtheinformationproduced[ 24 ].Whilemajormilestoneshavebeen achieved,includingmappingthehumangenome,therearemanyavenuesstillleftto explore.Inparticular,theconstructionandanalysisofmathematicalmodelsleadsto openquestions.Theincreasingspeedanddecreasingcostofcomputingtechnology,as wellasthedevelopmentofnewalgorithms,catalyzesthisprogress.Thedevelopment ofinexpensivehigh-speedcomputingcoupledwithnewalgorithmdesignhasledtoa newtypeofexperimentalprotocol. Inadditiontotraditionalbiologyexperimentsconducted invivo (inanorganism)and invitro (inalaboratory),experimentscannowbeconducted insilico (in 1

PAGE 9

acomputerprogram)[ 23 ].Theadvancesinmolecularbiologyandcomputingboth contributetotheincredibleriseof insilico experimentation.Thisprovidesaframeworkforquantitativemodelspurportingtodescribebiologicalphenomena.Thereare currentlyprojectsunderwaytomodelarangeofbiologicalsystems,fromsub-cellular functionstosystemsofcellsinacomputersimulation.However,thereareobstacles relatedtoboththemodelingandthecomputationalaspectsofthisresearch. Thepromiseofmathmodelingtoleadtonewinsightdependsontwofactors;the modelsandthetoolsappliedtothem.First,theaccuracyofthemodelingequations oftenlimitsthequalityofthemodel'sresults.Asthesystemsincreaseincomplexity,theanalysisoftheunderlyingmodelpresentsavarietyofintellectualchallenges, incentivizingsimplifyingassumptions.Beyondthedi" cultyinfullyunderstanding biochemicalreactions,thereisatrade-o!betweenhighresolutionequationsandcomputationaltime.Second,theanalytictoolsusedtounderstandamodel'sresultscan produceartifactsandloseinformationintheprocess,especiallyinlightofamodels simplifyingassumptions[ 21 ].Thechallengeofchoosingananalyticlens'isexempliedinthecalculationofthesinglesensitivityscoreusedhereandinotherways ofmeasuringsensitivity.Anartifactoccursinsensitivityanalysiswhenascoreis normalized.Someparametersaresettoavalueofzero,andwhennormalizedthe sensitivityscoreisthenalsozero.Agoodexampleofinformationbeinglostcanbe foundinBlissetal'sappropriatelytitledFromcomplexitytowhatreallymatters' whentimeseriessolutionsaresummedupintoasinglescore[ 5 ].Thissummation occurshereaswellforcalculatingthesensitivityscore.Thisscoredoesnotconvey anyofthedynamicsofthesensitivityscore,suchasthatoftryptophanconcentration withrespecttotryptophanconsumptionbyproteinsynthesis.Theoperonswitching fromo!'toon'canbeseeninsomesensitivitytimeserieswhenthefunctionchanges sign,foraclearexampleseeparameter g inthebottomrowofFigure9. Despitethesechallenges, insilico experimentsareincreasinginpopularitybecauseoftheiradvantages[ 23 ].Theseadvantagesincludetheextremelylowcost 2

PAGE 10

ofexperiments,easeofreproducibilityandshorttimeframenecessarytorunexperimentsbyrunningsoftware.Theabilitytocheaplyconductmanyexperimentsquickly allowsforexploratorysciencetotakeplaceinsmallcommunities,suchasNewCollege,whereadvancedmolecularbiologyequipmentcanbeprohibitivelyexpensive. Anadditionalbenetof insilico experimentsisthelegibilityofmodelingequations comparedtotheopaquemechanismsoperatingwithinacell.Thestraightforward mathematicsofthemodelsallowforarobustunderstandingando!ersavarietyof analytictoolstoresearchers.Theprimarytoolusedhereissensitivityanalysis,the studyofinputvariationwithrespecttooutputvariation[ 13 ].Sensitivityanalysis ndsthederivativeofeachvariableconcentrationwithrespecttoeachparameter andnormalizesthesesensitivitiesforameaningfulcomparison.Alargenormalized sensitivityscoreindicatestherespectiveconcentrationwillbeinuencedmuchmore thanitwouldforperturbationsofaparameterwithasmallnormalizedsensitivity score.Theseperturbedparameterscanrepresentrealmutations,allowingthesame modeltorepresentdi!erentstrainsofthesameorganism[ 22 ]. Themodelsusedfor insilico experimentsinthisthesisarecoupledsystemsofordinarydi!erentialequations.Theseequationsdenevariableconcentrationsinterms ofconstantparameters,suchasthethosefoundinAppendixA.1.Astheresolution ofourunderstandingofcellularregulatoryprocessesincreases,sodotheparameters associatedwiththemetabolicpathway.Witheachadditionalstepinametabolic pathwaythatisdiscovered,modelsbecomemoreaccurate.Thiscomesintheform ofadditionalvariablesandparameters,oftenseveralparametersforeachvariable. Mathematicalbiologywrestleswiththeselargesystemsofequationsinvolvingmany parametersthatmodelrealmetabolism[ 11 ].Fortunatelyforthoseseekingtounderstandthesemassivesystems,mostparametershaveaminimalinuencewhileafew parametersdominatethebehaviorofthesystem[ 9 ].Thisthesispresentsatoolfor understandingsystemsintermsoftherelativeinuenceofparameters. 3

PAGE 11

Inthisthesisananalysisoflocalparametersensitivityisperformedforthe Mackey-Santillanmodelof E.coli tryptophanregulation[ 25 ].Themethodrelies uponcomputeralgebrasoftwareandcanbeappliedtomanysimilarsystemsofordinarydi!erentialequation.Thealgorithmisbasedincalculus,therefore,theanalysis ismoreelegantandinsightfulthandiscretelyproducedresults[ 13 ]. Theremainderofthisthesisisarrangedinvechaptersasfollows.Thesecond chapterpresentsalighttreatmentofmathematicalmodeling,providingthereader backgroundonmassactionkineticsandunderlyingassumptions.Thethirdchapter discussesmolecularbiology,theeldofstudythatdescribesthescaleandconditions insideacell.Inthesetwochapters,mathematicalmodelingisappliedtomolecular biology.Importantly,wemodelenzymekineticsandtheirroleinregulatorynetworks usingsystemsordinarydi!erentialequations.Withthisfoundation,thefourthchapterintroducesthetryptophanoperonanditsmodel,alongwiththemodel'shistory ofincreasingaccuracy.Inthenalchapter,wepresenttheanalyticaltechniquesand theirresultsforthetryptophanoperon.Thisthesisconcludeswithadiscussionand directionsforfuturework. 4

PAGE 12

CHAPTER2 MathModeling 1.Introduction Wewillbeinterestedinmodelingphysicalsystemswhichchangeovertime.Our fundamentaltoolwillbeordinarydi! erentialequations,thatisexpressionoftheform d dt ( X )= f ( X ( k,t ) ,k,t )(1) Where X ( k,t )isthequantitybeingsolved, k isaparameterwhichoccursinthe model, t istimeand f ( X ( t ) ,k,t )providesthedynamicsofthemodel.Wewillbe particularlyinterestedinstudyinghow X dependsontheparameter k ;di!erencesin this k valueleadstodi!erencesinthefunction X ( t )(seeFigure1).Thedi!erence betweenthevaluesof X ateach t ,fordi!erentvaluesof k ,canbecomputedinorder todeterminethemagnitudeduetothee!ectofthechangein k .Thecorresponding di !erenceapproximatesaderivative,willplayanimportantroleinthesensitivity analysis. Asanexample,consideranthranilatesynthaseconcentration[ E ]inFigure1for di !erentvaluesof d ,themaximumtryptophanuptakerate.Noticethatneartime 40,thetwocurvesintersectandthesensitivity E d ( t )switchessigns.Thispoint correspondstotheoperonswitchingfromnonproductivetoproductive.Thedi! erence betweenthesetwofunctionsisadiscretewaytomeasuresensitivity.Thecomputed sensitivitycurvecanbefoundatthebottomofFigure8.Detail,suchasthis,islost duringthecalculationofthetotalsensitivityscorefoundinTable1aswellasany methodthatproducesanumberbyaveragingovertime. 5

PAGE 13

! "! #!! #"! $!! !%" # #%" $ $%" & &%" '(#! ) *+ "! #!! #"! $!! !%$ !%) !%, !%# '(#! & .+ "! # !! # "! $ !! !%# !%$ !%& !%) !%" !%, !%/ 0( "! # !! # "! $ !! #! #" $! $" &! 1( Figure1. Concentrationsofanthranilatesynthasefortwovaluesfor theexternaltryptophanuptakeparameterd.Forthebluecurve,d istheestimatedvalueandtheredcurvehadexternaltryptophanuptakeincreased10%.Concentrationismeasuredin molsandtimeis measuredinminutes. 2.MassActionKinetics ThelawofMassActionstatesthatinawellmixedsolution,chemicalsexpressan a"nitynotonlybasedontheircompositionbutalsotheirconcentration[ 7 ].There aretwotermsinthismodel.Theconcentrationofthemoleculeandthereactionrate, whichisacombinationofnecessaryactivationenergyandthemolecularcollisionrate. Thismodelarisesfromdi! usion,thenaturalmovementfromhighconcentrationto lowconcentration.Thatis,thechangeinconcentrationdependsontheconcentration itself.Thisrelationshipdescribesanordinarydi!erentialequation,whichwecanthus 6

PAGE 14

usetomodelchemicalreactionsingeneralandenzymekinematicsspecically.We dosoasfollows. Thechangeinaconcentrationisthedi!erencebetweentheproductionandconsumptionofthechemicalasdenotedinEquation3.Bothproductionandconsumption aremodeledwiththelawofMassAction;theyareproportionaltotheproductof relevantconcentrations.Takeforexampletwomolecules,AandB,thatcombineto formaproductC.Inthelanguageofmassactionkinetics,Equation3isasecondorderequationbecausethereactionincreasesexponentiallywiththeproduct[ A ][ B ],as both[ A ]and[ B ]increase.Arstorderchemicalreactioncouldincreaselinearlyonly withanincreaseinasingleconcentration.Notethatbracketsdenoteconcentration andthatparameters k arerateconstants. A + B C (2) WecanwriteanequationsothatthechangeintheconcentrationofCisproportionaltoboththeconcentrationsofAandB,weightedbytheirreactionrates.C degradesatsomerate k 2 ,i.e.consumption. d [ C ] dt = k 1 [ A ][ B ] k 2 [ C ](3) Massactionkineticsreferstothesolutionnotbeingatasteadystate.Tostudy dynamics,weusuallybeginbyndingthesteadystate.Thesteadystatecanbe foundbysettingtheratetozero,assumingthereisnochangeintheconcentration. [ A ]+[ C ]= A 0 (4) FromEquation2andtheprinciplesofmassactionkinetics,onlyoneunitofAis neededtoproduceoneunitofC.Thus,thereisaconservationrelationshipstating [ A ]+[ C ]doesnotchange(seeEquation4).Wecansimplifythesystemandcompute 7

PAGE 15

steadystateswiththeconservationequation,steadystateassumptionandmodeling Equation3.Since d [ C ] dt =0,Equation3becomes k 1 [ A ][ B ]= k 2 [ C ](5) CombiningEquations4and5gives [ C ]= k 1 k 2 [ A ][ B ]= k 1 k 2 ( A 0 [ C ])[ B ]](6) k 1 k 2 [ B ][ C ]+[ C ]= k 1 k 2 A 0 [ B ](7) [ C ]= A 0 [ B ] K eq +[ B ] (8) Where[ C ]isatthesteadystateand K eq = k 2 k 1 3.StabilityAnalysis Thestabilityofsolutionscanbedeterministicallyelucidatedfromthemodeling equations.Whethervariableswilltendtooscillate,gotozeroorsomeotherlimit,or growindenitely,canallbecalculated.InEquation8, K eq istheequilibriumrate,in thiscasearatioofthetworateconstants.Consistentwithintuition,thedynamics arestablewhentheconcentrationsarebalancedrespectivetotheirreactionrates. Forexample, if K eq ismuchlessthan[B],thesolutionwillbelargelyproduct, if K eq =[B]wouldindicatethathalfofthesubstratehasbeencatalyzedinto product, andif K eq ismuchlargerthan[B],thereversereactiondominatesthesystem andthesolutionremaininglargelyunreactedsubstrate. Thesteadystateassumptionallowsustosimplifythesystembyadimension. Investigationsofsteadystatesallowustocomparereactionratesinasystem.The veryfastreactionscanbeassumedtohaveachievedsteadystateandtheirderivatives arethenzero[ 26 ].Ifavariableconcentrationistakentobeinthequasisteady 8

PAGE 16

stateandit'sequationsettozero,themodelisreducedbyonevariable.Thisis animportantassumptionformanymodelsandallowsustomodelsomethingas interrelatedascellularmetabolismwithreasonableaccuracy[ 25 ]. 4.EnzymeKinetics Enzymaticreactionshaveimportantcharacteristicsthatmakethemdistinctfrom otherchemicalreactions.Theircatalyticinuence,specicityandpreciseregulation makeenzymessuitableforcellularmachinery[ 11 ].Massactionkineticsneedto bemodiedtoaccuratelymodelenzymekinetics.Importantly,enzymesarenot consumedinthereactionstheycatalyze.Themassactionrelationshipimpliesthat increasesinconcentrationsleadtoincreasesinreactionrates,wheninrealityenzymes haveamaximumrate, V max .Thereactionvelocityistherateatwhichproductis created.Theenzymeconcentrationwillappearonbothsidesoftheequationinorder toconserveitstotalconcentration.Theconservationofenzymeconcentrationaswell astheconservationofmassplaysimportantrolestheanalysisofthemodelforcellular regulatoryfunctions. TheMichaelis-Mentenmodelofanenzymaticreactiondemonstratesbasicobservedbehavior[ 15 ].Thesimplestmodeltakesonesubstratethatisconvertedinto aproductbyoneenzyme.Thenewdynamicarisesfromthemiddletermwhichrepresentsthesubstrate-enzymecomplexandfromtheone-wayreactionfor[ P ].Thisis consideredone-waybecauseproductsareremovedfromthesolutionbeingmodeled (Keenernotesthatthisisnotthecase invivo [ 11 ]).Equation13istheratelimiting step.Nomattertheconcentrationofsubstrate,onlythoseboundtothexedsmall numberofenzymesin[ C ]canbeconvertedintoproduct. S + E k 1 k 2 C k 3 P + E (9) 9

PAGE 17

Noticetherearefourequationsdeningthefourvariables'derivatives. d [ S ] dt = k 2 [ C ] k 1 [ S ][ E ](10) d [ E ] dt =( k 2 + k 3 )[ C ] k 1 [ S ][ E ](11) d [ C ] dt = k 1 [ S ][ E ] ( k 3 + k 2 )[ C ](12) d [ P ] dt = k 3 [ C ](13) Thereareanumberofsimplifyingassumptions. Thesumofsubstratesandproductsdoesnotchangeandequalstheinitial concentrationofsubstrate. Thesumofenzymeandsubstrate-enzymecomplexconcentrationdoesnot changeandequalstheinitialconcentrationofenzymes. Themaximumconcentrationofenzyme E 0 istakentobemuchsmallerthan theconcentrationofsubstrate[ S ]. Theaboveassumptioncontributestothequasi-steadystateapproximation thattheconcentrationofsubstrate-enzymecomplexremainsconstantbecausealltheenzymesareworkingatcapacity. TheresultingexponentialcurveisdenedbytheMichaelis-Mentenequation.AlthoughtheworkofMichaelisandMentenwasfoundational,thisequationwasderived in1925byBriggsandHaldane[ 4 ].Thisimportantfunctionisusedtodeneterms suchasmaximumreactionrate,denedbythelimitingstepinEquation13,andcan befoundinFigure2.Matlabplotsoftimeseriessolutionsdemonstratethelimiting natureoftheserelationshipsintheasymptoticsteadystateconcentration.ExamplesoftheseequationscanbefoundinAppendixA.1whichmodelprocessessuchas tryptophanconsumptionby E.coli Considerationsformodelinganenzymaticreactionmustalsoincludetheinuence ofothermolecules;whethercompetitiveorcooperative.Feedbackloopsareamajor 10

PAGE 18

Figure2. Graphofthereactionvelocityforthemodelgivenby MichaelisandMenten.Whentheconcentrationofsubstrateequals K M ,thereactionvelocityisonehalfofmaximum[ 4 ]. regulatorymechanismincellularreactions[ 5 ].Whentheproductionofachemical stimulatesfurtherproduction,thecircuitissaidtohavepositivefeedback.This changeindynamicsleadstotheHillequation,afoundationalmodelinmolecular biology. TheQuasi-SteadyStateHypothesisstatesthatwecanreasonablyexaminethe dynamicsoftheslowerreactionsbyassumingthefasterreactionsareatequilibrium. Inthismodel,theassociationofsubstratetoenzymehappensquicklyandthetotalnumberofenzyme-substratecomplexesremainslargelyconstantafterveryearly time[ 26 ].Thesigmoidalcurveproducedbythisfunctionaccuratelymodelsmoleculara"nityinmanybiochemicalreactionsandcanbebestseeninthegraphof anthranilatesynthase(seeFigure1)[ 5 ]. Repeatingthealgorithmfromtheprevioussectiononsteadystates,wecancompute[ C ]andthemaximumreactionrate.Assuming d [ C ] dt =0,Equation12becomes ( k 3 + k 2 )[ C ]= k 1 [ S ][ E ](14) Recallthat[ E ]+[ C ]=[ E 0 ]andlet K M = k 3 + k 2 k 1 K M [ C ]=([ E 0 ] [ C ])[ S ](15) 11

PAGE 19

[ C ][ S ]+ K M [ C ]=[ E 0 ][ S ](16) [ C ]= [ E 0 ][ S ] [ S ]+ K M (17) SincetheratelimitingstepisgivenbyEquation13,wewrite v = d [ P ] dt = k 3 [ C ](18) v = k 3 [ C ]= k 3 [ E 0 ][ S ] [ S ]+ K M (19) Notethemaximumreactionratedependsontheinitialenzymeconcentrationsbecauseitlimitsthemaximumenzyme-substratecomplexthatcanbeformed.These dynamicsarearestatementofEquation12.Oncewehavethesteadystateapproximation,theMichaelis-Mentenequationforreactionvelocityforming[ P ]follows[ 7 ]. V max = k 3 [ E 0 ](20) v = V max [ S ] [ S ]+ K M (21) ThedynamicsofthisfunctioncanbeseeninFigure2andmodelsmanyofthe reactionsinthemolecularbiology.Bothtryptophanuptakefromtheenvironmentand tryptophanconsumptionbyproteinsynthesisin E.coli aremodeledwithMichaelisMentenequationsinfunctions F ( T,T ext )and G ( T )foundinAppendixA.1.Inthese equations, V max isgivenbytheparameters d and g respectively. 12

PAGE 20

CHAPTER3 CellBiology Afundamentalstructureoflife,cellsaresmall(nm)self-reproducinglipidbilayer sacs[ 16 ].Singlecelledorganismswillbethesubjectofdiscussion,howevermore complexorganisms,includinghumans,regulategeneticexpressioninsimilarways. Thesimilarityhasbeencloseenoughtoallowinsightintohumandiseases. Escherichiacoli ,atube-shapedbacterium,willbethefocusofthisstudy.Like otherprokaryotecells,geneticmaterialisnotcontainedinthenucleus;ratheritoats intheunicellularorganism'scytoplasm[ 16 ].Commonlyfoundinanimalintestines andaround2micrometerslong, E.coli iswellstudiedintermsofgenetics.In addition,muchhasbeendonebywayofthestudyof E.coli cellregulation. 1.EnzymeKineticsandBiochemistry Thecentraldogmaofmolecularbiologydescribestheowofinformationfrom geneticmaterialtocellularstructures.InlivingcellsDNAistranscribedintomRNA inaprocesscalledtranscription.Theshortlifespanofmessenger'RNAmakesit suitablefortransmittingasignalratherthanstoringinformation.Inaprocesscalled translationmRNAisencodedintoaminoacidchains[ 11 ]. DNA mRNA Protein Tryptophanisoneofthe20aminoacidsthatmayoccurinaproteinsequence.One ormoreoftheseaminoacidchainsarefolded,aprocesswhichisnotwellunderstood, intoproteins.Proteinsareinvolvedinmanycellfunctions;composingmanythings fromcellstructurestoenzymesthatcatalyzechemicalreactions.Inmostofthese cases,theshapeandtoftheproteinandothermoleculesgivestheproteinit'sunique 13

PAGE 21

abilities.Conformationchangesinthestructurecanleadtootherchangessuchas enablingabindingsite,asisthecaseforinhibitionofanthranilatesynthase.Proteins composeenzymesthatcanfacilitatechemicalreactions.Someproteinscan,like phosphatase,removephosphatesfromcellularstructures,rendingtheminanactive orinactivestate.Otherenzymesfosterthecovalentbondstosynthesizenecessary biochemicals. Unassistedchemicalreactionsoccurattooslowandtoorandomapacetosupportlife.Incells,enzymesaresynthesizedandusedtoregulatechemicalreactions. Enzymesareproteinsthatlowertheactivationenergyrequiredforachemicalreaction.Therearemanymechanismsthroughwhichanenzymeaccomplishesthis, includingbringingtogethertwosubstratestoformaproductwithreactionsitesthat attracttheproductsmorestronglythantheproductsattracteachother.Theyare physicallyinvolvedinthereactionandarethuslimitedinthescopeoftheire!ect. EnzymaticreactionswillbedescribedusingMassActionKineticsfromthepreceding chapter[ 11 ]. 2.TranscriptionalLevelControlofGeneExpression JacobandMonodsoughttoaddressthequestionofhowmicrobiallifeisable torespondsoquicklytoenvironmentalchanges.Theyproposedtheresponsewas duetotheexpressionofgenescontrolledbyasiteontheDNA[ 10 ].Theideaof geneticregulationbeinglocaltotheDNAstrandwasinitiallycontroversial[ 29 ]. Experimentationinprokaryotesandlatereukaryotesconrmedtheexistenceand importanceoftheirhypothesizedgeneticswitches.Fortheirworkontheoperon, theywereawardedtheNobelPrizein1965[ 20 ]. Therearemanyregulatorynetworkswithinacellusingacombinationofprotein inhibitionandsignalmolecules.Thephosphorylationofenzymes,whichinhibitsor inducestheiractivity,isperhapsthemostcommonscheme.Powerfulregulatorytools atthecell'sdisposallieatthegeneticlevel.Decidingwhichproteinsareexpressed 14

PAGE 22

ultimatelycanleadtocellspecializationandotherformsofgeneexpression.ThenetworkofphysicalandchemicalreactionstranscribesDNAandtranslatestheresulting mRNAintoproteinsatvaryingfrequencesbasedonsignals,suchastheconcentration oftryptophanintheoperondescribedlater.Thiscanberegulateddirectlyonthe DNAbutcontrolisfurthermodulatedbythedegradationofmRNA. Anexampleoftranscriptionallevelcontrolistranscriptionalattenuation.Transcriptionalattenuationistheabruptterminationoftranscriptiondependingonthe relativespeedoftranslationandtranscriptiontoeachother.Becausethisprocess reliesonthemRNAbeingbothtranslatedandtranscribedsimultaneously,itisonly possibleinprokaryoticcells(eukaryoticcellshaveanuclearenvelopeseparatingthese processes).Thisregulationtakesadvantageofasinglenucleotidestrand'sa" nityfor complementarystrands.ThenascentmRNAproducedbyamRNApolymeraseand stillexposedbytheribosomewillfoldoverandformnon-covalentbondsbetween complementarysectionsashairpinloops[ 30 ].Translationrequiresaminoacidsto synthesizeproteins,andtheribosomecannotmoveforwardwithoutthecoded-for aminoacid.ThisdelayallowstherstandsecondsectionsofthemRNAtoformthe hairpinstructure,whichwouldsignalacontinuationoftranscription[ 32 ].However, ifthetheribosomeisabletomoveovertheearliersectionsofmRNAthenthelatter sectionsofthestrandwillformadi!erenthairpinstructurenearertothepolymerase. ThisstructurecrowbarsthepolymeraseandunnishedmRNAstrandawayfromthe DNA,endingtranscription[ 30 ]. Anotherexampleoftranscriptionallevelcontrolisthegeneticswitch.Genetic switchesaresequencesofDNA,orgenes,whichturnonoro!theexpressionofother protein-encodinggenes.Positivelycontrolledgeneticswitchesareactivatedwhenan activatorproteinbindstothepromotorDNAregionandencouragestranscription initiation.Onceapromotorbindswiththeactivatorprotein,RNApolymeraseis abletoopenandtranscribetheoperon.RibosomestranslatetheresultingRNAinto aminoacidchainsthatarefoldedintoproteins. 15

PAGE 23

involveseveralsequentialstagesorevents.Thestagesused inattenuationregulationofthe trp operonof E.coli aredescribedinFigure5(LandickandYanofsky1987; Yanofsky2000).Anessentialfeatureofthisattenuation mechanismisthesynchronizationoftranslationofa 14-residueleaderpeptidecodingregion, trpL ,withtranscriptionoftheoperon'sleaderregion.Synchronization isachievedbyexploitingfeaturesoftheinitialsegmentof theleadertranscript,thesegmentoverlapping trpL .This segmentcanformanRNAhairpinstructure,designated hairpin12,calledtheanti-antiterminator.Hairpin1:2 alsoservesasatranscriptionpausesignal(seeFigs.4,5). Transcriptionalpausingisrelievedwhenaribosomebinds atthe trpL mRNAstartcodonandinitiatessynthesisof theTrpLleaderpeptide.Themovingribosomeappearsto disrupttheRNApausehairpin,releasingthepausedRNA polymerase(Fig.5,Stage1).Subsequently,eitheroftwo eventsoccurs,dependingontheavailabilityofuncharged versuschargedtRNA Trp .Whenmostofthecellular tRNA Trp isuncharged,difficultyintranslatingthetwo Trpcodonsof trpL mRNAresultsinribosomestallingat oneoftheseTrpcodons(Figs.4,5,Stage2b).Thisallows theantiterminatorstructure,hairpin23,toform(Fig.4), whichpreventsformationoftheterminatorstructure. Preventionofterminatorformationallowstranscription tocontinueintothestructuralgenesoftheoperon(Fig.5, Stage2b).WhenchargedtRNA Trp isplentiful,however, translationof trpL iscompleted,andthetranslatingribosomedissociatesatthe trpL stopcodon.Thispermitsthe leadertranscripttofoldandformtheanti-antiterminator andterminatorstructures,1:2and3:4(Fig.4),promoting transcriptiontermination(Fig.5,Stage2a).Thus,dependingontheavailabilityofchargedtRNA Trp duringtranslationof trpL ,transcriptionofthestructuralgeneregionof the trp operonwillorwillnotproceed. Manyaminoacidbiosyntheticoperons ofGram-negativebacterialspeciesare regulatedbysimilarribosome-mediated transcriptionattenuationmechanisms (Yanofsky1981).The uniquedistinguishingfeatureofeachistheinclusion ofcodonsfortherespectiveaminoacid inthecorrespondingleaderpeptide codingregion. Regulatorysubtletiesabound,however,thereforeeacheventateach stageisnotabsolute.Otherregulatory processesinfluence trp mRNAsynthesis andsurvival, trp codingregiontranslation, trp enzymefunctionandturnover,and trp enzymeactivity(Landick andYanofsky1987;Yanofskyand Crawford1987).Forexample,andmost importantly,theactivityofthefirst enzymeofthetryptophanbiosynthetic pathway,anthranilatesynthase,issubjecttofeedbackinhibitionbyLtryptophan.Thisistypicalofthefirst enzymeofmanybiosyntheticpathways. Feedbackinhibitionisaphysiologically advantageousprocessbecauseitallows aninstantaneousandreadilyreversiblereductionintheflowofcarbon andnitrogenintoapathway. trp operonorganization andregulationin B.subtilis Thegenesofthe trp operonofthis organismareorganizeddifferentlythan in E.coli (Fig.6;HennerandYanofsky FIGURE5. Thesequential,alternativeeventsregulatingtranscriptionterminationinthe leaderregionofthe trp operonof E.coli .Stage1:TheRNApolymerasemoleculethatinitiates transcriptionofthe trp operonpausesaftersynthesizingtheinitialsegmentofthetranscriptthesegmentthatformstheanti-antiterminatorpausestructure(LandickandYanofsky 1987;Yanofsky2004).Whilethepolymeraseispaused,aribosomebindsatthe trpL mRNA startcodonandinitiatessynthesisoftheleaderpeptide.Thistranslatingribosomethen disruptstheanti-antiterminatorpausestructure,releasingthepausedpolymeraseandallowing ittoresumetranscription.Stage2a:WhenthereissufficientchargedtRNA Trp inthecellto allowrapidcompletionofsynthesisoftheleaderpeptide,thetranslatingribosomeisreleased. Theanti-antiterminatorandterminatorstructuresthenform,promotingtranscription termination.Stage2b:WhenthereisadeficiencyofchargedtRNA Trp ,theribosometranslating trpL mRNAstallsatoneofitstwoTrpcodons.ThispermitstheRNAantiterminatorstructure toform,whichpreventsformationoftheterminator.Transcriptionthencontinuesintothe operon'sstructuralgenes.(ModifiedfromFig.2inYanofsky2004andreprintedwith permissionfromElsevier 2004.) Yanofsky 1144 RNA,Vol.13,No.8 Figure3. Twodi!erentwaysmRNAcanfold,where2aterminates transcriptionand2ballowsittocontinue[ 32 ]. 3.Operons Acommonandpowerfulschemeusingageneticswitchistheoperon.Oneinstanceofanoperonmaintainsahealthyleveloftryptophanandtryptophansynthesis withinan E.coli cell.Theoperonregulatorynetworkincludesasetofgeneswhich shareacommonoperatorbindingsite.Theoperatorisabindingsiteforaregulatory proteinthatblocksmRNAproduction,howeveroperonscanbeinducedaswellas repressed[ 25 ].Operonsareregulatedbyactivatorandrepressorenzymesbinding totheoperator,eitherinthepresenceorabsenceofaligand.Itisconsideredinducibleifthepresenceofaligandencouragestranscription,andrepressibleoperons arecharacterizedbyaligandwhichinhibitstranscription. Oftenoperonstatesdependonenvironmentalconditions.Forexample,anabundantproteincantriggerageneticswitchtoblockthetranscriptionofthatprotein's gene.Throughfeedback,theoperatorpreventsRNApolymerasefrombindingtothe 16

PAGE 24

biosynthesisisabiologicallyexpensive,complicatedprocess.Infact,theproductsoffourotherpathwaysare essentialcontributorsofcarbonornitrogenduringtryptophanformation(YanofskyandCrawford1987;Yanofsky etal.1999).Thus,theprincipalpathwayprecursor, chorismate,isalsotheprecursoroftheotheraromatic aminoacids,phenylalanineandtyrosine,aswellasserving astheprecursorofp-aminobenzoicacid andseveralothermetabolites.Inaddition,glutamine,phosphoribosylpyrophosphate,andL-serinecontribute nitrogenand/orcarbonduringtryptophanformation.Thus,eachorganism withtryptophan-synthesizingcapacity musthaveadoptedappropriateregulatorystrategiestoensurethatsufficientlevelsofchorismateandthese otherthreecompoundsareproduced. Inmanyorganismstryptophanserves astheprecursorofotherbiologically essentialcompounds,i.e.,niacinin mosteukaryotes,indoleaceticacidin mostplants,andindoleinmanybacteria.Thustheregulatorystrategies designedforthegenesoftryptophan biosynthesisofeachorganismhavehad tobecompatiblewithothermetabolic objectives.Aninterestingfeatureof tryptophanbiosynthesisisthatthis capabilitywasdispensedwithwhen organismsevolvedthatwerecapableof obtainingtryptophanbyfeedingon otherorganisms.Nevertheless,as mentioned,productsoftryptophan degradation/metabolismareessential intheseorganisms. Regulatorymechanismscontrolling transcriptionofthe trp operon of E.coli Thegenesrequiredfortryptophanbiosynthesisin Escherichiacoli areorganizedasasingletranscriptionalunit, the trp operon(Fig.2;Yanofskyand Crawford1987).Thisoperonhasa singlemajorpromoteratwhichtranscriptioninitiationisregulatedbya DNA-bindingprotein,theL-tryptophan-activated trp repressor(Yanofsky andCrawford1987).Thisrepressoracts bybindingatoneormoreofthree operatorsiteslocatedinthe trp operon's promoterregion(Fig.2;Lawsonetal. 2004).Thestructuresoftheinactive trp aporepressor,the tryptophan-activated trp repressor,andthe trp repressor operatorcomplexhaveallbeendetermined,andthis repressor'smechanismofactioniswellunderstood(Fig.3; Otwinowskietal.1988;JoachimiakandZhang1989; Shakkedetal.1994;Gryketal.1996).Theaporepressorand repressoraredimerscomposedof identicalhelix-turn-helix FIGURE1. Thegenes,enzymes,andreactionsofthetryptophanbiosyntheticpathway. Thesevengenes,orgeneticsegments,sevenenzymes,orenzymedomains,andsevenreactions,involvedintryptophanformationareshown(YanofskyandCrawford1987).Only oneofthereactionsisreversible.Theproductsoffourotherpathwayscontributecarbon and/ornitrogenduringtryptophanformation.Twoofthetryptophanpathwayenzymes oftenfunctionaspolypeptidecomplexes:anthranilatesynthase,consistingoftheTrpG andTrpEpolypeptides,andtryptophansynthase,consistingoftheTrpBandTrpA polypeptides. FIGURE2. Organizationofthe trp operonof E.coli .Thegenesof E.coli requiredfor tryptophanbiosynthesisfromchorismateareorganizedinasingleoperon,ortranscriptional unit(YanofskyandCrawford1987;Yanofsky2004).Twopairsofgenesarefused: trpG and trpD ,and trpC and trpF .Thestructuresofthesetwobifunctionalpolypeptidesareknown, andseparatepolypeptidesegmentsareconcernedwithcatalysisofeachreaction.Therelative orderofthesevengeneticsegments, trpEGDFCBA ,correspondsroughlytotherelativeorderof therespectiveenzymaticreactions.The trp operon'sregulatoryregion,locatedatthebeginning oftheoperon,isdesignedtosensetwosignals,L-tryptophan,andchargedvs.uncharged tRNA Trp (LandickandYanofsky1987;Yanofsky2004).Tryptophan,wheninexcess,activates the trp aporepressor,whilechargedandunchargedtRNA Trp determinewhethertranscription willorwillnotbeterminatedintheoperon'sleaderregion.Apoorlyexpressedinternal promoterprovidestranscriptsproducinglowlevelsofthelastfewenzymesofthepathway. Thispromoterisusefulwhentheprincipalpromoteristurnedoff.(p=promoter;t= terminator).(ModifiedfromFigs.1and2inYanofsky2004andreprintedwithpermission fromElsevier 2004.) Yanofsky 1142 RNA,Vol.13,No.8 Figure4. Thedi! erentgeneticelementsthatcomposeanoperon, includingtherepressorbindingsite,leadersequenceandproteincoding genes[ 32 ]. operon.UnabletotranscribetheRNA,thecell'sribosomesareunabletobindor translatethesequencesintotheaminoacidchainsthatformproteins.Thisregulatory schemefreesupresourcesforothercellfunctions.Aninducibleoperonisnaturally inhibiteduntilaproteinorothermoleculeallowsthegenetobeexpressed,causing acascadethroughthemetabolicpathway.Arepressibleoperonisexpresseduntila repressormoleculebindstotheoperonandhaltstranscription;arepressoristhereby atranscriptionfactor. Thebacteria E.coli hasagenomeconsistingofonecircularstrandofDNAencodingroughly4300proteins[ 19 ].However,noteverygeneshouldbeexpressedat alltimesandgeneticswitcheshelpfacilitatehealthycellularlife. E.coli 'sgenetic switchesaresimilartootherprokaryoticcells;theymostlydependonsurrounding resourcesandingeneralusethefewrepressionschemesdescribedhere. Transcriptioncanbeinhibitedbyarepressorproteinboundtotheoperatorand thisiscallednegativecontrol.TherepressorphysicallyblocksRNApolymerasefrom bindingtothepromotorandthuspreventsproteinsynthesis(seeFigure5foran excellentpicture).Becausethisconformationalchangeinhibitstheproductionof tryptophan,thisanegativelycontrolledrepressibleoperon[ 32 ]. 17

PAGE 25

CHAPTER4 TheTryptophanOperon Awellstudiedoperonoccurringin E.coli ,thetryptophanoperonhasbeenmodeledsuccessfully[ 23 ].Tryptophanisoneofthetwentynaturallyoccuringaminoacids andisnecessarytomakesomeproteins,whicharechainsofaminoacids.Techniques foraccuratelymeasuringtryptophanincellcultureshavebeenaroundfordecades[ 6 ]. Thesystemhastwoprimarystatesthatitwillgravitatetowardsdependingonthe initialenvironmentalconditions.Inanenvironmentdevoidoftryptophan,theoperatorbindingsiteremainsunblockedandpolymerasemaybindtoproducemRNA.The concentrationoftryptophanlevelsoutasproductionincreases,oncethereisenough tobindandactivatetherepressor.Oncebound,therepressoroccupiestheoperator bindingsiteanddownregulatesthegeneticexpression,andtherebyproduction,of tryptophan-synthesizingproteins.Thisstableconcentrationoftryptophanistherst steadystate.Thealternativeisasystemwhichbeginswithtryptophanintheenvironment.TryptophanuptakewillpreventthetrpRfromfallingintoitsaporepressor state.Ifthisenvironmentaltryptophanisfullyconsumedthenthecorepressorswill disassociatefromtheDNA,restartingtranscription. In E.coli ,thetryptophanrepressorisahomodimerwhichusesahelix-turn-helix motif[ 32 ].Thebindingoftwotryptophanmoleculestiltsthesestructuressothatthe repressorproteinmaysitproperlyintheDNA'smajorgroove.Thetwoconformations andtherepressor'stwithDNAarerenderedinFigure5.Tryptophanisconsidered theco-repressorinthismechanism.Aregulatorygeneencodestherepressorprotein andnearby,thereisabindingsitefortherepressoronthechromosome.Therepressor trpRactuallyrepressesit'sowntranscriptionaswellonlywhentryptophanispresent, 18

PAGE 26

Figure5. Renderingofthetryptophanoperonrepressor,trpR,byDr. AndrzejJoachimiak[ 32 ].Whentwomoleculesoftryptophanbindto trpR(center),thecomplexundergoesanallosterictransitionsuchthat ittsintheDNA'smajorgroove(right) forthesamephysicalreasons.Thissavesthecellforwastingaminoacidsona repressorthatisnotneeded,asimilaradvantagetorepressingthetryptophanoperon. Therearetwootherfeedbackschemesintheoperon.First,anthranilatesynthasecanbepreventedfromcatalyzingtryptophansynthesisbybindingtopresent tryptophanmolecules.Thesecondtryptophan-sensingcomponentistranscriptional attenuation.Recall,intranscriptionalattenuationthemRNAstrandproducedby thetrpgenecanformregulatorystructuresasitispolymerized[ 34 ].Theleader sequencecodesfortwotryptophanaminoacidsinarow[ 35 ].Ifaribosomeisable tondthenecessarytryptophanforthisleadersequence,thenastructurecanform thatleadstorapiddisassociationofthemRNApolymerasefromtheDNAandRNA. Iftheribosomeisstalledbyalackoftryptophan,thenitphysicallypreventsthis terminatorstructurefromformingandtranscriptionnishesnormally. 1.TheModel Ultimatelythemodelshouldbeunderstoodasaswitch.Theswitchtakesas inputtheexternaltryptophanconcentrationwhilethelevelofenzymeactivitycan 19

PAGE 27

beconsideredtheoutput.Eitherenzymesareproducingtryptophanortheyarenot, dependingonthestateofthegeneticswitch. FollowingtheworkofMichealisandMenten,theoperonwasdescribedbyJacob andMonodin1960[ 29 ].TheirconceptwasasinglesiteonDNAthatwouldregulate theexpressionofanearbygene.Mathematicalrepresentationsweredevelopedby GoodwinandGri"thby1965.TheGoodwinmodelhadthreevariables,mRNA, EnzymeandTryptophanconcentrationsandreliedheavilyonHillfunctions.This modeldidnothavetranscriptionalattenuationortimedelaysbutdidsetthestage forfurtherwork.In1982Blisspublishedanupdatedmodelincludingdelaysand manyoftheparametersusedinthecurrentmodel[ 5 ].Bliss'parameterestimations andsimplifyingassumptionssetprecedentsthathavepersistedfordecades[ 14 ].DuringthetimeBlissdevotedtothemathematicalmodel,Yanofskywasinvestigating thebiologyoftryptophanregulationanddiscoveredregulatoryschemes.Yanofsky succeededinsequencingthetryptophanoperonandprovidinggreatinsightonthe functioningoftranscriptionalattenuation[ 34 ]. WithYanofsky'sdiscoveries,Sinhapublishedarenedmodelin1988[ 28 ].This modelhadappropriateparametersforthedimerrepressoractivationbutlackedattenuationanddelayfactors[ 14 ].Themostdevelopedmodelwasrstpublishedin 2000byMackeyandSantillan,includingdelayequationsandallthreeregulatory schemes:enzymeinhibition,transcriptionalattenuationandoperonrepression[ 25 ]. 2.TheMackey-SantillanModel TheMackey-Santillanmodelissimpliedherebysettingthedelaytermstozero. Despitethelossofdetail,majordynamicsarepreserved.Otherparametershave beenexperimentallyestimatedorchosenfortheirreasonablerepresentationofthe metabolicnetwork.Theyestimateanaverageof1.6genomespercelltoaccountfor cellsthatareintheDNAreproductionorGap2phaseofthecellcycle[ 25 ]. 20

PAGE 28

Theimportantvariablesunderconsiderationthenaretheconcentrationsoffour things;operonbindingsites,mRNA,catalyzingenzymeandtryptophan[ 14 ].The modelcanbefoundinAppendixA.1.Theseareindividuallyimportant;evenafter theoperonhasbeenrepressed,themRNAmuststillbedegraded.Thecatalyzing enzymecancontinuetoproducetryptophanafterthemRNAhasbeendegraded. InEquation28,thethirdtermrelatestothechangeinconditionfromtryptophanrichmediatotryptophanstarvation.When T ext =0,theuptaketermalsoequals zero.Theremainingterms,synthesis,consumptionanddilutioncontroltryptophan dynamicsinthemodeledconditionoftryptophanstarvation.Bothoperonsand mRNAconcentrationsaretakenastheconcentrationoffreebindingsites. Importantquasi-steadystateassumptionsincludetheconcentrationoftrpRrepressor,mRNApolymeraseconcentration,ribosomalconcentrationandotherindependentlyregulatedmolecules[ 14 ].Thesevaluesareconsideredconstantbecause theirreactionsoccurveryquicklyrelativetotherestofthesystem.Theregulation oftrpRisonaseparategenebasedonit'sownconcentration.Thisenzymeachieves asteadystatesquicklyandisnotdegraded,itcanbeconsideredconstant.Similarly mRNApolymeraseandribosomesareregulatedsuchthatthecellmaintainsaconsistentconcentrationandthistoocanbeconsideredconstantforsimplicity.Allof theparameterconcentrationsareestimatedforasinglecellaveraging8 x 10 16 liters involumeinaculturethatisgrowingexponentially.Asummaryofparametersand theirestimationsappearsinAppendixA. 21

PAGE 29

CHAPTER5 SensitivityAnalysis Manye! ortshavebeenmadetowardsanalyzingsystemsintermsofparameters. Thevariationofparameterscanilluminatehowsystemsaremaintainedandcan beperturbed.Forexample,thea"nityoftryptophantotherepressorproteinis moreimportantthantherateoftranslation.Whilesensitivedependenceoninitial conditionslendsitselfmoretowardschaoticstudy,thereisafundamentaldi! erence. Instudyingchaos,questionsaboutwhatvaluesforaparameterleadtophenomena, suchasbifurcation,areimportant.Insensitivityanalysis,questionsaboutwhat parametersleadtophenomena,suchasdown-regulationofproduction,areimportant. ApopularsensitivityscoringtoolistheFourieramplitudesensitivitytest(FAST) [ 22 ].FASTisavariancebasedalgorithmappropriateforglobalanalysis.Another globalanalysisapproachusesMonteCarlocalculations[ 24 ].Someattemptsinclude perturbingaparameterbyasetpercentageandcomputingthedi!erenceinsystem outputs.Thiscanberepeatedandcomparedbutishighlysensitiveitselftothe percentchange.Thistechniqueisalsotimeconsuminganduntilrecentlyprohibitively computationallyexpensive.Hornbergetalusedmeasuressuchasintegratedareaand duration[ 9 ].Thisapproachdoesnottakeintoaccountthedi!erencesinsensitivity overtime.Thereisalsoanincreasederrorassociatedwithdiscretelycalculated di!erencesasstand-insforcontinuousprocesses. Amoreprecisemethodusescalculustoproducesymbolicsensitivityequations wherethereisanequationforthederivativeofeachvariablewithrespecttoeach parameter[ 13 ].Usingthedenitionof f ( X,t )inEquation1, d dt ( X )= f ( X ( k,t ) ,k,t ) 22

PAGE 30

wecancomputethechangein X withrespectto k .InFigure1,youcanseethe di !erencebetweentwovaluesof X atanygiventfortwovaluesofaparameter.This di !erencecanbetakenovertimeandisconsideredthesensitivityfunction X k ( t ).Because X or k maybeverylargeorsmallcomparedwith X k ,normalizingtheresults areveryimportant.Asmallchangeinabignumbershouldhaveasmallersensitivityscorethanthesamesizechangeinaverysmallnumber.Normalizingpartial derivativeswithrespecttorelevantparameterallowsformeaningfulcomparisonof resultingsensitivityscores. Startingwitheachdi!erentialequationoccurringinthemodel,wetakethepartial derivativewithrespecttoaparameterk.TheresultingODEisfoundwithachange ofbaseonthelefthandsideoftheequationandachainruleexpansionontheright (both f and X arefunctionsof k ).Thisiscalledthetotalderivative[ 5 ].From Equation1wehave: d dt X k = f ( X,k ) X X k + f ( X,k ) k (22) ThesolutiontothesystemofODEsfromEquation22isthesensitivityof X with respectto k [ 13 ].Thuswehaveaformforthederivativeofthesensitivities,where d dt X k dependson X k .TheMaplecodeinAppendixB.1followstheabovealgorithm tosymbolicallyproduce d dt X k forevery X and k inthesystem. 1.ImplementationoftheAnalysis Therearetwoprogramsusedtosolvetwopartsoftheproblem.First,inMaplewe solvesymbolicallyforthenecessarysensitivitymatricesresultingfromEquation22. ThersttermrequiresaJacobianderivativetaken, f ( X,k ) X ,because f ( X,k )isaknown function.MapleisabletotaketheJacobianofthesystemaswellascomputethe partialderivativesrequiredforthesecondterm f ( X,k ) k .Theyarecombinedwiththe unknown MxN matrix S = X k usingsymbolicmatrixmultiplicationandaddition. Maplethenproducestheresultingequationsthatdescribethesensitivity.Generally, 23

PAGE 31

for N variablesand M parameters,thereare NxM sensitivityODEsthatmustbe solvedsimultaneouslywiththemodelODEs.Inthetryptophanoperon,thereare fourvariablesand24parameters,leadingto96resultingequations.Someofthese equationsareeverywherezero,implyingavariablemaynotbesensitivetoevery parameter. Empiricaldatafromculturesgrown invitro areusedtocalculateinputvalues[ 8 ]. UsingMatlab,weplugintheempiricalparametervaluesandinitialconditionsin ordertonumericallysolvetheequationsforcomparablesensitivityscores.TheMatlab sensitivitycoe"cientresultstelluswhichparametersthesystemismostsensitiveto. Matlabcanquicklyandeasilysolvefordi!erentinitialconditions.Thecomputer revolutionmakesthispossible;thedi!erentialequationsMatlabsolveswouldbe verydi"cultandtimeconsumingtosolvesymbolicallybyhand.Mapleiscrucial totheprocessconsideringtheonehundreddi!erentialequationsneedtobesolved simultaneously.Anyderivationerrorwouldthrowthesystemo!. 2.Results Thecomputermodelprovidedbothdynamicsofthesystemaswellassensitivity scoresforeachvariableandparameter.Graphswithequalizedaxeshelpdemonstrate thedi!erencesinsensitivity.Consistentlytranscriptionalattenuationisanimportant parameterforthetryptophanoperon.Thisisnotsurprisingconsideringearlymodels oftheoperonincludedtranscriptionalattenuationwhereasotherparameterscame lateraslessinuentialrenementsofthemodel[ 25 ]. Thereareseveralpossibleresultswecanexpectfromthesoftware.Thesoftware solvesasensitivityequationproducedbythealgorithmdescribedearlierinthischapter.Forinput,thesoftwarerequiresthemodeling dX dt equationsandestimationsfor theparameters.Thesoftwareproducesamatrixofallthesolution X ( t )functions,as wellasthesetof X k ( t )sensitivitysolutionfunctions,foragivenmodelofvariable X 's andparameters.Theoutput X k functionsdescribeaparametersinuenceovertime 24

PAGE 32

foraspeciedvariableandtherearentimesmequations.Thesefunctionsmaystart largeandshrinkquickly.Somesensitivitiesarepositiveinearlytimebutnegativein latertime.Otherpossibleresultsareconstantandzerofunctionsdescribingsensitivity.Thezerofunctioncanbeexpectedforcertainvariablesthatdonotdependon thespecicparameter. Inthetryptophanoperonmodelthereare4times24,equalto96,resultingsensitivityfunctions.YoucanseeinFigures6to9thatsomefunctionsarezeroandsome changesignandsomeareonlyimportantduringcertaintimes. NotablegraphsincludeseveralfortryptophanconcentrationinFigure9.Notice nearlyeveryparameterissensitiveinearlytime.Thisisthepointwhentheculture hasjustbeenwashedofitstryptophan-richmediaandisnowbeinggrowninastate oftryptophanstarvationforthersttime.Reactionsrelatedtotryptophanareat theirhighestduringthisphase. Thegraphof forTryptophan(seethesecondfrombottomrowofFigure9)is onlypositiveduringamiddleperiodandotherwisenegative,andlargelynegativein earlytime.Atrstalargegrowthratedilutesthetryptophanandcreatesincreased demand,butperhapslaterwhentryptophanproductionisuninhibitedthereisa certaineconomy-of-scalethathelpssupplementthedemandfortryptophan,however thisdecreaseslinearlyanddoesnotlastintothesteadystate. Besidesparameterb,themaximumchanceoftranscriptionalattenuation(discussedinmoredetailbelow),parametersganddbothhaveo! -the-chartsearlytime sensitivitiesfortryptophan.Theparametergrepresentsthemaximumtryptophan consumptionratebythecell,thenaturalusageoftheaminoacidintheproductionof proteinsforregularcellfunctioning.Whetherthecellconsumesit'sleftovertryptophanstoresquicklyorslowlycriticallyinuencestheentiremetabolicpathway.The parameterdrepresentsthemaximumtryptophanuptakerate,thatistheabilityof E.coli tomoveextracellularaminoacidsintothecellandtoretaintryptophanin thecellagainstthenaturalforceofdi!usion.Thisismostlyintheformofmembrane 25

PAGE 33

! "! #! $! %! &!! &"! &#! &$! &%! "!! # '(&! # )* &!! "!! + + (((,(((( &!! "!! + + (((-(((( &!! "!! + + (( (( &!! "!! + + ( ( &!! "!! + + ((. / 0(( &!! "!! + + ((1 2 ((( &!! "!! + + (((3(((( &!! "!! + + ((4 5 ((( &!! "!! + + (((6(((( &!! "!! + + (((*(((( &!! "!! + + (((()((( &!! "!! + + (. 7 ( &!! "!! + + (. 87 ( &!! "!! + + (. 9 ( &!! "!! + + (. 89 ( &!! "!! + + (. : ( &!! "!! + + (. 8: ( &!! "!! + + (((. ; (( &!! "!! + + &!! "!! + + (( ((( & !! !! + + (((<(((( & !! !! + + ((((5((( & !! !! + + (((/(((( & !! !! + + (((4(((( Figure6. Timeseriesandparametersensitivityfortheconcentration offreeoperatorbindingsites.Thetimeseriesatthetopisin mols andtimeisinminutes.Allsensitivitiesareunitless.Bluesensitivities exceededanabsolutevalueof1atanypoint. 26

PAGE 34

! "! #! $! %! &!! &"! &#! &$! &%! "!! !'( & )*&! + ,! &!! "!! ( ( ***.**** &!! "!! ( ( ***/**** &!! "!! ( ( ** ** &!! "!! ( ( &!! "!! ( ( **0 1 2** &!! "!! ( ( **3 4 *** &!! "!! ( ( ***5**** &!! "!! ( ( **6 7 *** &!! "!! ( ( ***8**** &!! "!! ( ( ***-**** &!! "!! ( ( ****9*** &!! "!! ( ( *0 : &!! "!! ( ( *0 ;: &!! "!! ( ( *0 < &!! "!! ( ( *0 ;< &!! "!! ( ( *0 = &!! "!! ( ( *0 ;= &!! "!! ( ( ***0 > ** &!! "!! ( ( 0 &!! "!! ( ( ** *** & !! !! ( ( ***?**** & !! !! ( ( ****7*** & !! !! ( ( ***1**** & !! !! ( ( ***6**** Figure7. Timeseriesandparametersensitivityfortheconcentration offreemRNAavailabletomRNApolymerase.Thetimeseriesatthe topisin molsandtimeisinminutes.Allsensitivitiesareunitless. Bluesensitivitiesexceededanabsolutevalueof1atanypoint. 27

PAGE 35

! "! #! $! %! &!! &"! &#! &$! &%! "!! !'( & )* &!! "!! ( ( ***+**** &!! "!! ( ( ***,**** &!! "!! ( ( ** ** &!! "!! ( ( &!! "!! ( ( **. /** &!! "!! ( ( **0 1 *** &!! "!! ( ( ***2**** &!! "!! ( ( **3 4 *** &!! "!! ( ( ***5**** &!! "!! ( ( ***6**** &!! "!! ( ( ****7*** &!! "!! ( ( *8 &!! "!! ( ( *98 &!! "!! ( ( *: &!! "!! ( ( *9: &!! "!! ( ( *; &!! "!! ( ( *9; &!! "!! ( ( ***< ** &!! "!! ( ( &!! "!! ( ( ** *** & !! !! ( ( ***=**** & !! !! ( ( ****4*** & !! !! ( ( ***.**** & !! !! ( ( ***3**** Figure8. Timeseriesandparametersensitivityfortheconcentration ofanthranilatesynthase.Thetimeseriesatthetopisin molsandtime isinminutes.Allsensitivitiesareunitless.Bluesensitivitiesexceeded anabsolutevalueof1atanypoint. 28

PAGE 36

! "! #! $! %! &!! &"! &#! &$! &%! "!! &! "! '( &!! "!! ) ) (((*(((( &!! "!! ) ) (((+(((( &!! "!! ) ) (( (( &!! "!! ) ) ( ( &!! "!! ) ) ((, .(( &!! "!! ) ) ((/ 0 ((( &!! "!! ) ) (((1(((( &!! "!! ) ) ((2 3 ((( &!! "!! ) ) (((4(((( &!! "!! ) ) (((5(((( &!! "!! ) ) ((((6((( &!! "!! ) ) (, 7 ( &!! "!! ) ) (, 87 ( &!! "!! ) ) (, 9 ( &!! "!! ) ) (, 89 ( &!! "!! ) ) (, : ( &!! "!! ) ) (, 8: ( &!! "!! ) ) (((, ; (( &!! "!! ) ) &!! "!! ) ) (( ((( & !! !! ) ) (((<(((( & !! !! ) ) ((((3((( & !! !! ) ) (((-(((( & !! !! ) ) (((2(((( Figure9. Timeseriesandparametersensitivityfortheconcentration ofinternaltryptophan.Thetimeseriesatthetopisin molsandtime isinminutes.Allsensitivitiesareunitless.Bluesensitivitiesexceeded anabsolutevalueof1atanypoint. 29

PAGE 37

boundproteinsthatactasaone-wayvalve.Thehighsensitivitymaybedueto theabilityofacelltokeepinternaltryptophanonceithasbeenwashed,sincethere shouldbenoexternaltryptophantoinuencethedynamics. Foreveryvariableconcentration,bothganddchangesignsintheearlytime, althoughearlierforthefreeoperatorbindingsitesandmRNA.Thiscouldbeconsideredthepointatwhichtheswitch'isippedandthesystemgoesfromo!'to on'.Thereisareasonabledelaybeforeaconsequentincreaseintryptophanand tryptophanproducingenzymescanbeobserved. Mostsensitivitiesgetverysmallasthesystemreachesasteadystateofconstant tryptophanproductionandanassumedconstantconsumptionrate,i.e.25micromols perminute.Recallthattheparameter hasbeensettozeroandassucheachofits graphsareeverywherezero. Noticethatparameterbhasaverylargepositivegraphforfreeoperonconcentrationbuthasalargenegativegraphfortryptophanconcentration.Highlyprobable attenuationwouldfreeupmanyoperonsbutwouldpreventproductivemRNAfrom beingtranscribed,preventingtryptophanproduction. Inordertocomparethepartialdi! erentialequationsmeaningfully,wenormalize eachfunctionbyit'sownvariableconcentrationdividedbyparametervalue.This willcanceloutthenon-comparableunitsofmeasurelikemicrolitres.Comparing thesenormalizedtimeseriescanbeimportant,especiallywhenteasingoutpositive andnegativeinuencesonaparameter. NormalizedSensitivity ( t )= k X ( t ) X k ( t )(23) Score = 1 t final t final t = t 0 | NormalizedSensitivity ( t ) | (24) Equation24givestheequationforndingasinglescore.Takingtheabsolute valueofthetimeseries,summingupeachdatapointandaveragingovertimegives 30

PAGE 38

Table1. Summedsensitivityscoresforthe24parametersandfour concentrationsfromthecodeinAppendixB.2 RP #"k d Dn H b K g FreeOperons0.330.610.610.000.580.403.430.14 FreemRNA0.390.440.560.000.420.412.470.13 Enzyme0.480.530.530.000.520.363.020.09 Tryptophan1.481.591.590.001.550.958.990.52 TOTAL2.683.163.290.003.072.1117.910.88 efO k r k r k i k i k t 0.000.090.390.330.330.250.250.29 0.390.390.240.240.330.000.090.44 0.480.480.230.230.400.000.090.53 1.481.480.830.831.200.010.191.59 2.682.681.561.562.220.020.462.95 k t k p k cgdk TOTAL 0.290.610.610.680.002.102.130.61 15.05 0.330.440.560.590.002.092.190.56 13.70 0.400.530.530.480.002.182.100.47 14.68 1.201.591.591.500.005.514.511.59 41.76 2.223.163.293.260.0111.8710.933.22 85.19 risetoasinglesensitivityscoreforanygivenvariablewithrespecttoanygiven parameter.Thisscoreprovidesfortheclearrankingofinuence.Further,thesum ofallofasinglevariable'sorparameter'sscorescanbecomputedandthisgivemore informationaboutthemodeledsystem.ThesescoresaregiveninTable1,whichlists thesensitivityscoreswithvariableconcentrationsinrowsandparametersincolumns. SeeFigure10foravisualrepresentationofthisdata. Tryptophanhasthelargesttotalsensitivityscore.Transcriptionalattenuation hasthelargestindividualscorewiththescoreforrepressordisassociationsimilarly large.Thesetwoparametersofthe96resultingscoresarespecicallytryptophan 31

PAGE 39

Figure10. SummedSensitivityScoreforParameters.Eachbarrepresentsaparameter'stotalsensitivitywhileeachsectionrepresentsa specicvariable'ssensitivitytothatparameter.Thepositionalongthe xaxisrepresentsthepositiondownthelistgiveninTable2.Sensitivity isunitless. regulatingmechanismsandiftheyarethemostsensitive,tryptophanshouldbethe mostsensitivevariableinthesystem.InFigures11and12,youcanseethesteady stateoftryptophanconcentrationregulatedwithrespecttotheparameter.Although theyappeartohavesimilarslopeinthegures,parameterbcausesasimilarchange intryptophanconcentrationwithhalfthevariationinparameter k t .Astrp-trpR disassociationincreases,sodoesthetryptophansteadystateconcentration. Predictionscanbemadeaboutperturbationsusingthesensitivityscores.Changingaparameter'svaluebysomepercentshouldproducethechangesrecordedinthe sensitivityfunction'stimeseries.Ifa X k ( t )showspositivesensitivityinearlytime butnegativesensitivityinlatertime,therespectivevariable'sgraphshouldbehigher inthebeginningbutlowerthantheoriginalinlatetime.InFigure1thevalueof parameter d ,themaximumtryptophanuptakerate,hasbeenincreasedtenpercent. Itcanbeseenthatconcentrationswerechangeddi! erentlyinearlytimecomparedto latertime,correlatingwelltothesensitivityfunctionforparameter d (seethebottom rowofFigures6through9).Theconcentrations[ Of ]and[ Mf ]areinuencedrst 32

PAGE 40

Figure11. Tryptophanconcentrationsteadystatewithrespectto maximumtranscriptionalattenuationrate.Tryptophanismeasuredin molsandparameterbisunitless. andoccurrstinthemetabolicpathway.Then[E]and[T]areinuencedtogether asthee!ectsmoveupthroughthecentraldogmaofmolecularbiologyfromDNAto proteins.Notethatthevariousparameter k positiveandnegativeratesareequalbut oppositeintheirsensitivity. ThecomputerresultsinFigure10indicatingthissystemismostsensitivetoparameter b correlateswelltotheexperimentalresults[ 14 ].Theseexperimentsshow adi!erenceinmeasuredsteadystatescorrespondingtomutationsincreasingtranscriptionalattenuationin E.coli cultures[ 25 ].Whentheparameterisincreased,its negativesensitivityscoremirrors,overtime,thesuppressionofenzymeactivitythat ismeasuredinthelab. 33

PAGE 41

Figure12. Tryptophanconcentrationsteadystatewithrespectto trp-trpRdisassociationrate.Tryptophanismeasuredin molsand parameterbisunitless. Theconcentrationoftryptophanismostsensitivetoparameterchangescomparedtotheotherconcentrations,conrmingthemodeloperonprimarilyregulates tryptophanlevels. 34

PAGE 42

CHAPTER6 Discussion Varioussensitivitymethodsandotheranalyticaltoolsexist,howeversomemay bemorepronetoartifactsanderror.Oncesolvedandnormalized,thesolutiontothe sensitivityequationsprovidesrichinformationaboutsystemdynamics.Thesuccess witnessedhere(consistencywithlaboratoryresults,elucidationofmechanisms,possibletherapeuticinformation)maybeinpartduetonature'sconsistentlydocumented parallelswithmathematics.Itcomesasnosurprisethatacalculusbasedsensitivity analysisaccuratelyrevealsnaturaldynamics. Someanalyticaltechniqueswillproduceresultsthatindicatetranscriptionalattenuationisnegligibleasaregulatorymechanism[ 3 ].However,thisresultsfromproblemsinthetoolsusedforevaluatingtheparameters.TheJacobian-basedalgorithm producesamoreempiricallyconsistentresult.Stochasticcalculationofsensitivity usingnitedi!erenceapproximationscanproduceinconsistentresultsandaremore computationallytaxing[ 13 ]. Themethodusedherewasaconsolidationofdi! erentworks.Printingtheresults tablerequiredsomealgorithmsforcolumnsorting.OverlayinggraphsinMatlabwas achievedbyrerunningtheprogramwhilepreservingthegraphfromthelastrun. TheMatlabfunctionode15ssolvestheODEs.Thissolverisappropriateforsti! equations.Asti!systemmodelsreactionsthatoccurondi! erenttimescales,where onerequiresshortstepswhileanothercanbesolvedaccuratelywithmuchlonger steps[ 27 ]. TheinitialconditionsofvariablesareestimatedbyMackeyandSantillanwhile initialsensitivityscoresaresetto1asperLeisetal[ 25 ][ 13 ]. 35

PAGE 43

Themodelequationsleissplitfromtheprogramlefortworeasons.Therst isforclarityofthecodeandthesecondisforuniversalityofthemethod.Whatis writteninMapleisapplicabletoasystemofvariable X 'sandconstant k 's.Mapleis moresuitableforsymbolicoperations.Matlabismoreappropriateforthenumerical solutionofthesystem,especiallyasamatrixfocusapplication[ 1 ].Theresultsare returnedinasinglematrix.Itshouldbenotedtherearefreealternativecomputer algebrasoftwarepackages,suchasGNUOctave. 1.FurtherResearchandDirection Thereisroomforbothfutureresearchandanalysis.Themodelcouldbemade moreintricateandaccurate.Therearemanyapproachestoanalyzingmodelsaswell. Futureworkwouldrstincorporatedelaydi!erentialequationsintothe model.Thisisamoreaccuratemodelofthecellularfunctionsoftranscriptionandtranslation.Thosedelayscouldbesensitiveparametersaswell changethescoresforotherparameters. Thereareotherwaysofcalculatingthesensitivityscore,includingglobal approaches.TheseincludeGreen'smethodandtheDecouplingmethod. Thisthesisuseddeterministicmethodsbasedincalculus.Analternative approachwouldbeavariance-basedprobabilityanalysis.Notonlywould thoseresultsbeinterestinginthemselves,butthecomparisonofthetwo approachesshouldyieldinsightaswell. Amorecomplexmodelcanbedevelopedthatdoesnotapproximateculturewideconcentrations,butinsteadlocalizesconcentrationsonanx-yplane. Thismoreaccuratelysimulateschemicaldistributioninan E.coli culture. Similarresearchintoaverysmallpopulationofcellswouldbeinteresting, wherethelawoflargenumbersdoesnothold[ 14 ]. 36

PAGE 44

Moreworkoncurvettingwouldberequiredtodeterminethebestapproach tostatisticalissuessuchasoutliers.Aprogramcanbewrittentodetermine thebesttparametersaswellasthebestmodelingrelationships. Further,morelaboratorydatashouldbecompliedintodatabases,tocheck simulationresultsagainst.Suchadatabasecouldinstructresearcherson whatameaningfuldatasetlookslike. Thereareemergingstandardsthattakeadvantageofthiscollabrativeidea. TheSystemsBiologyMarkupLanguagee"cientlyenablesdi! erentscientists tosharetheirmodelsandexplore insilico experiments.Writingthismodel, oronewithdelaydi! erentialequationsinSBMLwouldbeacontributionto theopensourcecommunity. Collaborativeworkbetweenbiologistsandmathematiciansholdsthepromiseof anewgenerationofbreakthroughs[ 12 ].Highspeedcomputingcombinedwithhighthroughputbiotechnologycreatesanunprecedentedopportunityfordiscovery.As oldassumptionsgivewaytonewdevelopments,eacheldbenetsdespitetheneed torevisepastwork.Really,itiswhenthemodeldoesnotcapturedynamicsthatone startstolearnaboutthesystemunderstudy[ 14 ]. 37

PAGE 45

APPENDIXA EquationsandParameterDenitions 1.SimpliedMackeySantillanModeloftheTrpOperon dOf dt = # O # K r K r + R A ( T ) # # Of ( t )(25) dMf dt = k p # P # Of ( t ) # (1 A ( T )) ( k d D + ) # Mf ( t )(26) dE dt = 1 2 k # # # Mf ( t ) ( + ) # E ( t )(27) dT dt = K # E A ( E,T ) G ( T )+ F ( T,T ext ) # T (28) R A ( T )= R # T ( t ) T ( t )+ K t (29) A ( T )= b (1 e T ( t ) c )(30) E A ( E,T )= E ( t ) K n H i T ( t ) n H + K n H i (31) G ( T )= g T ( t ) T ( t )+ K g (32) F ( T,T ext )= d T ext e + T ext (1+ T ( t ) f ) (33) K t = k t k t (34) K i = k i k i (35) K r = k r k r (36) 38

PAGE 46

Table2. DescriptionandEstimationofParamters ParameterName ParameterDescription EstimatedValue&Units R TrpRConcentration .8 mols P FreemRNAPConcentration 2.6 mols # FreeRibosomeConcentration 2.9 mols Anth.Synth.DegradationConstant 0 min 1 k d D RNADegradationFactor .6 min 1 n H HillCoe" cient 1.2 b MaximumTranscriptionalAttenuation .85 K g Michaelis-MentenTerm .2 mols e IntakeParameter .9 mols f IntakeParameter 380 mols O TotalOperonConcentration 3.32x10 3 mols k r TrpR-OperonDisassociationRate 1.2 min 1 k r TrpR-OperonAssociationRate 460 mols min 1 k i Trp-Anth.Synth.DisassociationRate 720 min 1 k i Trp-Anth.Synth.AssociationRate 176 mols min 1 k t Trp-trpRDisassociationRate 2.1x10 4 min 1 k t Trp-trpRAssociationRate 348 mols min 1 k p mRNAP-DNAAssociationRate 3.9 mols min 1 k Ribsosome-mRNAAssociationRate 6.9 mols min 1 GrowthRate 1x10 2 min 1 c AttenuationFactor 4x10 2 mols g MaximumTrpConsumptionRate 25 mols min 1 d MaximumTrpUptakeRate 23 mols min 1 k MaximumTrpSynthesisRate 126.4 min 1 39

PAGE 47

APPENDIXB Code 1.MapleSensitivityMatrixBuilder restart;with(linalg); Var:=[Of,Mf,E,T]; NumVar:=nops(Var); Par:=[R,P,rhor,gammar,kdD,nH,b,Kg,Ee,Ff,Oo,knegr,kposr, knegi,kposi,knegt,kpost,kp,krho,mur,c,g,d,K]; NumPar:=nops(Par); f:=vector(NumVar); Kt:=knegt/kpost; Ki:=knegi/kposi; Kr:=knegr/kposr; RA:=(T*R)/(T+Kt); AT:=b(1-e^(-T/c)); EA:=E(Ki^nH/(T^nH+Ki^nH)); G:=(g*T)/(T+Kg); FText:=(d*Text)/(Ee+Text(1+(T/Ff))); f[1]:=(mur*Oo*Kr)/(Kr+RA)-mur*Of; f[2]:=kp*P*Of*(1-AT)-(kdD+mur)*Mf; f[3]:=.5*krho*rhor*Mf-(gammar+mur)*E; f[4]:=K*EA-G+FText-mur*T; 40

PAGE 48

R:=matrix(NumVar,NumPar,L); Jc:=jacobian(f,Var); df:=jacobian(f,Par); Eq:=evalm(Jc&R+df); 41

PAGE 49

2.MatlabDriver clearall clf % % Turn on the functions you would like 1 for on and 0 for off ', the % % features are numbered by position in the parameter operation % % default Solve ODE and graph each variable with sensitivity time % % series in it s own window ( unless 2 is on ) % % 1 Change a parameter s value ( edit below ) % % 2 Graph each variable in the same window and do not graph % % sensitivities % % 3 Plot bar graph in a new window % % 4 Print a results table text file ResultsTable.txt % % 5 Plot enzyme activity in a new window % % 6 Plot a specified parameter range against a specified variable operation=[0,0,0,0,0,0]; % % Set Parameter Values par(1)=.8; par(2)=2.6; par(3)=2.9; par(4)=0.0; par(5)=.6; par(6)=1.2; par(7)=.85; par(8)=.2; par(9)=.9; par(10)=380.0; par(11)=3.32e 3; par(12)=1.2; par(13)=460.0; par(14)=720.0; par(15)=176.0; par(16)=2.1e4; par(17)=348.0; par(18)=3.9; par(19)=6.9; par(20)=.01; par(21)=.04; par(22)=25.0; par(23)=23.5; par(24)=126.4; % % Set Labels Labs=[ Of Mf E T ]; parameterList=[ R P \ rho \ gamma k dD ... n H b K g e f O ... k { r } k { + r } k { i } k { + i } k { t } k { + t } ... 42

PAGE 50

' k p k {\ rho } \ mu c g d ... K ]; % % Change a Parameter Value if operation(1)==1 par(23)=par(23) 1.1; end % % Solve System for Initals with Tryptophan [T0Y0]=ode15s(@TryptophanODE,[012000],ones(1,100),[],par,400); % % Loop for large parameter variation graphs if operation(6)==1 % % Set variation range and choose varied parameter variedPar=7; count=0; for variedParRange=.85:.005:.9996 count=count+1; par(variedPar)=variedParRange; % % Set Length of Run tfinal=1000; % % Solve Again with Tryptophan Removed using Previous Results [TY]=ode15s(@TryptophanODE,[0tfinal],Y0( end ,:),[],par,0); % % Choose a variable to plot against variableChoice=4; if variableChoice==1 variableLabel= Free Operons ; elseif variableChoice==2 variableLabel= Free mRNA ; elseif variableChoice==3 variableLabel= Enzyme ; elseif variableChoice==4 variableLabel= Tryptophan ; end dataPoints(count,:)=[Y( end ,variableChoice),variedParRange]; end % % Plot the figure figure(7) plot(dataPoints(:,2),dataPoints(:,1)) xlabel(parameterList((8 variedPar 7):(8 variedPar)), Rotation ,0), ... 43

PAGE 51

ylabel(variableLabel, Rotation ,90) else % % Set Length of Run tfinal=200; % % Solve Again with Tryptophan Removed using Previous Results [TY]=ode15s(@TryptophanODE,[0tfinal],Y0( end ,:),[],par,0); end % % Plot Enzyme Activity if operation(5)==1 % % Set Length of Run tfinal=200; % % Solve Again with Tryptophan Removed using Previous Results [TY]=ode15s(@TryptophanODE,[0tfinal],Y0( end ,:),[],par,0); figure(6) Ki=par(14)/par(15); nH=par(6); EA=Y(:,3). (KinH)./(Y(:,4).nH+KinH); plot(T,EA, g ),holdon end % % Plot Latest Run Concentrations over Time for i=1:4 if operation(2)==1 % % plot on the same figure figure(1) subplot(2,2,i),plot(T,Y(:,i), b ),holdon ylabel(Labs(2 i 1:2 i)) else % % plot on different figures figure(i) subplot(7,1,1),plot(T,Y(:,i), k ),holdon ylabel(Labs(2 i 1:2 i), Rotation ,0) end end % % Normalize Sensitivities and Plot ( with blue lines for large scores ) for j=1:4 spacer=(j 1) 24; for i=(5+spacer):(28+spacer) NormalizedY(:,i)=Y(:,i). par(i (4+spacer))./Y(:,j); if max(abs(NormalizedY(:,i))) > 1 cc= b ; 44

PAGE 52

else cc= r ; end if operation(2)==0 figure(j) subplot(7,4,i spacer),plot(T,NormalizedY(:,i),cc),holdon, ... gridon ylabel(parameterList(1+8 (i (5+spacer)):8 (i (4+ ... spacer))), Rotation ,0) axis([0tfinal 55]) end end end % % Plot Bar Graph of Sensitivities by Parameter if operation(3)==1 NOf=NormalizedY(:,5:28); NMf=NormalizedY(:,29:52); NE=NormalizedY(:,53:76); NT=NormalizedY(:,77:100); figure(5) Sense=[sum(abs(NOf))',sum(abs(NMf))',sum(abs(NE))',sum(abs(NT))']; Sense=Sense./length(T); bar(Sense, stack ) legend( Of Mf E T ) xlabel( Parameters ) ylabel( Sensitivity ) end % % Chart Sensitivites of Variables by Parameters in a file ResultsTable.txt if operation(4)==1 NOf=NormalizedY(:,5:28); NMf=NormalizedY(:,29:52); NE=NormalizedY(:,53:76); NT=NormalizedY(:,77:100); entries=length(T); OFscore=sum(abs(NOf))./entries; MFscore=sum(abs(NMf))./entries; Escore=sum(abs(NE))./entries; Tscore=sum(abs(NT))./entries; TotalScore=OFscore+MFscore+Escore+Tscore; parameterList=[ R P rho gamma ... kdD nH b Kg Ee Ff ... Oo k r k + r k i k + i k t ... k + t kp krho mu c ... g d k ]; 45

PAGE 53

% % Print in Latex Format LatexTableArray=[OFscore,sum(OFscore);MFscore,sum(MFscore); ... Tscore,sum(Tscore);TotalScore,sum(TotalScore)]; LatexTable=latex(sym(LatexTableArray)) resultsFile=fopen( ResultsTable.txt w ); fprintf(resultsFile, % s TOTAL \ n ,parameterList); for i=1:5 score=[]; if i==1 score=OFscore; fprintf(resultsFile, Free Operons ); elseif i==2 score=MFscore; fprintf(resultsFile, Free mRNA ); elseif i==3 score=Escore; fprintf(resultsFile, Enzyme ); elseif i==4 score=Tscore; fprintf(resultsFile, Tryptophan ); elseif i==5 score=TotalScore; fprintf(resultsFile, \ n TOTAL ); end for j=1:24 fprintf(resultsFile, %+4 .2f \ t ,score(j)); end fprintf(resultsFile, %+4 .2f \ n ,sum(score)); end fclose(resultsFile); end 46

PAGE 54

3.MatlabModelEquations function dy=TryptophanODE(t,y,par,Text) NumVar=4; NumPar=length(par); % % Initialize Solution Matrix Y Of=y(1); Mf=y(2); E=y(3); T=y(4); R=par(1); P=par(2); rho=par(3); gamma=par(4); kdD=par(5); nH=par(6); b=par(7); Kg=par(8); Ee=par(9); Ff=par(10); Oo=par(11); knegr=par(12); kposr=par(13); knegi=par(14); kposi=par(15); knegt=par(16); kpost=par(17); kp=par(18); krho=par(19); mu=par(20); c=par(21); g=par(22); d=par(23); K=par(24); % % Set Up Parameters and Relationships for ODEs Kt=knegt/kpost; Ki=knegi/kposi; Kr=knegr/kposr; RA=R T/(T+Kt); AT=b (1 exp( T/c)); EA=E (KinH)/((TnH)+(KinH)); G=g T/(T+Kg); FText=d Text/(Ee+Text (1+T/Ff)); 47

PAGE 55

% % Model ODEs dOf=((mu Oo Kr)/(Kr+RA)) mu Of; dMf=kp P Of (1 AT) (kdD+mu) Mf; dE=.5 krho rho Mf (gamma+mu) E; dT=K EA G+FText mu T; dy=[dOfdMfdEdT]'; % % Set Up Sensitivity Matrix ( size NxM ) L=zeros(NumVar,NumPar); zz=1; for i=1:NumVar for j=1:NumPar L(i,j)=y(NumVar+zz); zz=zz+1; end end % % Sensivity Equations ( S = J S + dF ) Imported from Maple % dOf / dk !!!!!!!!!!!!!!!!!!!!! dy(5)= mu L(1,1) mu Oo knegr/kposr/(knegr/kposr+T/(T+ ... knegt/kpost) R)2 (0.1e1/(T+knegt/kpost) R T/(T+ ... knegt/kpost)2 R) L(4,1) mu Oo knegr/kposr/(knegr/ ... kposr+T/(T+knegt/kpost) R)2 T/(T+knegt/kpost); dy(6)= mu L(1,2) mu Oo knegr/kposr/(knegr/kposr+T/(T+ ... knegt/kpost) R)2 (0.1e1/(T+knegt/kpost) R T/(T+ ... knegt/kpost)2 R) L(4,2); dy(7)= mu L(1,3) mu Oo knegr/kposr/(knegr/kposr+T/(T+ ... knegt/kpost) R)2 (0.1e1/(T+knegt/kpost) R T/(T+ ... knegt/kpost)2 R) L(4,3); dy(8)= mu L(1,4) mu Oo knegr/kposr/(knegr/kposr+T/(T+ ... knegt/kpost) R)2 (0.1e1/(T+knegt/kpost) R T/(T+ ... knegt/kpost)2 R) L(4,4); dy(9)= mu L(1,5) mu Oo knegr/kposr/(knegr/kposr+T/(T+ ... knegt/kpost) R)2 (0.1e1/(T+knegt/kpost) R T/(T+ ... knegt/kpost)2 R) L(4,5); dy(10)= mu L(1,6) mu Oo knegr/kposr/(knegr/kposr+T/(T ... +knegt/kpost) R)2 (0.1e1/(T+knegt/kpost) R T/(T ... +knegt/kpost)2 R) L(4,6); dy(11)= mu L(1,7) mu Oo knegr/kposr/(knegr/kposr+T/(T ... +knegt/kpost) R)2 (0.1e1/(T+knegt/kpost) R T/(T ... 48

PAGE 56

+knegt/kpost)2 R) L(4,7); dy(12)= mu L(1,8) mu Oo knegr/kposr/(knegr/kposr+T/(T ... +knegt/kpost) R)2 (0.1e1/(T+knegt/kpost) R T/(T ... +knegt/kpost)2 R) L(4,8); dy(13)= mu L(1,9) mu Oo knegr/kposr/(knegr/kposr+T/(T ... +knegt/kpost) R)2 (0.1e1/(T+knegt/kpost) R T/(T ... +knegt/kpost)2 R) L(4,9); dy(14)= mu L(1,10) mu Oo knegr/kposr/(knegr/kposr+T/(T ... +knegt/kpost) R)2 (0.1e1/(T+knegt/kpost) R T/(T ... +knegt/kpost)2 R) L(4,10); dy(15)= mu L(1,11) mu Oo knegr/kposr/(knegr/kposr+T/(T ... +knegt/kpost) R)2 (0.1e1/(T+knegt/kpost) R T/(T ... +knegt/kpost)2 R) L(4,11)+mu knegr/kposr/(knegr/ ... kposr+T/(T+knegt/kpost) R); dy(16)= mu L(1,12) mu Oo knegr/kposr/(knegr/kposr+T/(T ... +knegt/kpost) R)2 (0.1e1/(T+knegt/kpost) R T/(T ... +knegt/kpost)2 R) L(4,12)+mu Oo/kposr/(knegr/ ... kposr+T/(T+knegt/kpost) R) mu Oo knegr/kposr2/ ... (knegr/kposr+T/(T+knegt/kpost) R)2; dy(17)= mu L(1,13) mu Oo knegr/kposr/(knegr/kposr+T/(T ... +knegt/kpost) R)2 (0.1e1/(T+knegt/kpost) R T/(T ... +knegt/kpost)2 R) L(4,13) mu Oo knegr/kposr2/ ... (knegr/kposr+T/(T+knegt/kpost) R)+mu Oo knegr2/ ... kposr3/(knegr/kposr+T/(T+knegt/kpost) R)2; dy(18)= mu L(1,14) mu Oo knegr/kposr/(knegr/kposr+T/(T ... +knegt/kpost) R)2 (0.1e1/(T+knegt/kpost) R T/(T ... +knegt/kpost)2 R) L(4,14); dy(19)= mu L(1,15) mu Oo knegr/kposr/(knegr/kposr+T/(T ... +knegt/kpost) R)2 (0.1e1/(T+knegt/kpost) R T/(T ... +knegt/kpost)2 R) L(4,15); dy(20)= mu L(1,16) mu Oo knegr/kposr/(knegr/kposr+T/(T ... +knegt/kpost) R)2 (0.1e1/(T+knegt/kpost) R T/(T ... +knegt/kpost)2 R) L(4,16)+mu Oo knegr/kposr/ ... (knegr/kposr+T/(T+knegt/kpost) R)2 T/(T+knegt/ ... kpost)2 R/kpost; dy(21)= mu L(1,17) mu Oo knegr/kposr/(knegr/kposr+T/(T ... +knegt/kpost) R)2 (0.1e1/(T+knegt/kpost) R T/(T ... +knegt/kpost)2 R) L(4,17) mu Oo knegr/kposr/ ... (knegr/kposr+T/(T+knegt/kpost) R)2 T/(T+knegt/ ... kpost)2 R knegt/kpost2; 49

PAGE 57

dy(22)= mu L(1,18) mu Oo knegr/kposr/(knegr/kposr+T/(T ... +knegt/kpost) R)2 (0.1e1/(T+knegt/kpost) R T/(T ... +knegt/kpost)2 R) L(4,18); dy(23)= mu L(1,19) mu Oo knegr/kposr/(knegr/kposr+T/(T ... +knegt/kpost) R)2 (0.1e1/(T+knegt/kpost) R T/(T ... +knegt/kpost)2 R) L(4,19); dy(24)= mu L(1,20) mu Oo knegr/kposr/(knegr/kposr+T/(T ... +knegt/kpost) R)2 (0.1e1/(T+knegt/kpost) R T/(T ... +knegt/kpost)2 R) L(4,20)+Oo knegr/kposr/(knegr/ ... kposr+T/(T+knegt/kpost) R) Of; dy(25)= mu L(1,21) mu Oo knegr/kposr/(knegr/kposr+T ... /(T+knegt/kpost) R)2 (0.1e1/(T+knegt/kpost) R T ... /(T+knegt/kpost)2 R) L(4,21); dy(26)= mu L(1,22) mu Oo knegr/kposr/(knegr/kposr+T ... /(T+knegt/kpost) R)2 (0.1e1/(T+knegt/kpost) R T ... /(T+knegt/kpost)2 R) L(4,22); dy(27)= mu L(1,23) mu Oo knegr/kposr/(knegr/kposr+T ... /(T+knegt/kpost) R)2 (0.1e1/(T+knegt/kpost) R T ... /(T+knegt/kpost)2 R) L(4,23); dy(28)= mu L(1,24) mu Oo knegr/kposr/(knegr/kposr+T ... /(T+knegt/kpost) R)2 (0.1e1/(T+knegt/kpost) R T ... /(T+knegt/kpost)2 R) L(4,24); % dMf / dk !!!!!!!!!!!!!!!!!!!!! dy(29)=(kp P (1 b (1 exp( T/c))) L(1,1))+( kdD mu) ... L(2,1) kp P Of b (exp( T/c))/c L(4,1); dy(30)=(kp P (1 b (1 exp( T/c))) L(1,2))+( kdD mu) ... L(2,2) kp P Of b (exp( T/c))/c L(4,2)+kp Of ... (1 b (1 exp( T/c))); dy(31)=(kp P (1 b (1 exp( T/c))) L(1,3))+( kdD mu) ... L(2,3) kp P Of b (exp( T/c))/c L(4,3); dy(32)=(kp P (1 b (1 exp( T/c))) L(1,4))+( kdD mu) ... L(2,4) kp P Of b (exp( T/c))/c L(4,4); dy(33)=(kp P (1 b (1 exp( T/c))) L(1,5))+( kdD mu) ... L(2,5) kp P Of b (exp( T/c))/c L(4,5) Mf; dy(34)=(kp P (1 b (1 exp( T/c))) L(1,6))+( kdD mu) ... L(2,6) kp P Of b (exp( T/c))/c L(4,6); 50

PAGE 58

dy(35)=(kp P (1 b (1 exp( T/c))) L(1,7))+( kdD mu) ... L(2,7) kp P Of b (exp( T/c))/c L(4,7)+kp P ... Of ( 1+exp( T/c)); dy(36)=(kp P (1 b (1 exp( T/c))) L(1,8))+( kdD mu) ... L(2,8) kp P Of b (exp( T/c))/c L(4,8); dy(37)=(kp P (1 b (1 exp( T/c))) L(1,9))+( kdD mu) ... L(2,9) kp P Of b (exp( T/c))/c L(4,9); dy(38)=(kp P (1 b (1 exp( T/c))) L(1,10))+( kdD mu) ... L(2,10) kp P Of b (exp( T/c))/c L(4,10); dy(39)=(kp P (1 b (1 exp( T/c))) L(1,11))+( kdD mu) ... L(2,11) kp P Of b (exp( T/c))/c L(4,11); dy(40)=(kp P (1 b (1 exp( T/c))) L(1,12))+( kdD mu) ... L(2,12) kp P Of b (exp( T/c))/c L(4,12); dy(41)=(kp P (1 b (1 exp( T/c))) L(1,13))+( kdD mu) ... L(2,13) kp P Of b (exp( T/c))/c L(4,13); dy(42)=(kp P (1 b (1 exp( T/c))) L(1,14))+( kdD mu) ... L(2,14) kp P Of b (exp( T/c))/c L(4,14); dy(43)=(kp P (1 b (1 exp( T/c))) L(1,15))+( kdD mu) ... L(2,15) kp P Of b (exp( T/c))/c L(4,15); dy(44)=(kp P (1 b (1 exp( T/c))) L(1,16))+( kdD mu) ... L(2,16) kp P Of b (exp( T/c))/c L(4,16); dy(45)=(kp P (1 b (1 exp( T/c))) L(1,17))+( kdD mu) ... L(2,17) kp P Of b (exp( T/c))/c L(4,17); dy(46)=(kp P (1 b (1 exp( T/c))) L(1,18))+( kdD mu) ... L(2,18) kp P Of b (exp( T/c))/c L(4,18)+P Of ... (1 b (1 exp( T/c))); dy(47)=(kp P (1 b (1 exp( T/c))) L(1,19))+( kdD mu) ... L(2,19) kp P Of b (exp( T/c))/c L(4,19); dy(48)=(kp P (1 b (1 exp( T/c))) L(1,20))+( kdD mu) ... L(2,20) kp P Of b (exp( T/c))/c L(4,20) Mf; dy(49)=(kp P (1 b (1 exp( T/c))) L(1,21))+( kdD mu) ... L(2,21) kp P Of b (exp( T/c))/c L(4,21)+kp P ... Of b (exp( T/c)) T/(c2); dy(50)=(kp P (1 b (1 exp( T/c))) L(1,22))+( kdD mu) ... 51

PAGE 59

* L(2,22) kp P Of b (exp( T/c))/c L(4,22); dy(51)=(kp P (1 b (1 exp( T/c))) L(1,23))+( kdD mu) ... L(2,23) kp P Of b (exp( T/c))/c L(4,23); dy(52)=(kp P (1 b (1 exp( T/c))) L(1,24))+( kdD mu) ... L(2,24) kp P Of b (exp( T/c))/c L(4,24); % dE / dk !!!!!!!!!!!!!!!!!!!!! dy(53)=krho rho L(2,1)/0.2e1+( gamma mu) L(3,1); dy(54)=krho rho L(2,2)/0.2e1+( gamma mu) L(3,2); dy(55)=krho rho L(2,3)/0.2e1+( gamma mu) L(3,3)+krho ... Mf/0.2e1; dy(56)=krho rho L(2,4)/0.2e1+( gamma mu) L(3,4) E; dy(57)=krho rho L(2,5)/0.2e1+( gamma mu) L(3,5); dy(58)=krho rho L(2,6)/0.2e1+( gamma mu) L(3,6); dy(59)=krho rho L(2,7)/0.2e1+( gamma mu) L(3,7); dy(60)=krho rho L(2,8)/0.2e1+( gamma mu) L(3,8); dy(61)=krho rho L(2,9)/0.2e1+( gamma mu) L(3,9); dy(62)=krho rho L(2,10)/0.2e1+( gamma mu) L(3,10); dy(63)=krho rho L(2,11)/0.2e1+( gamma mu) L(3,11); dy(64)=krho rho L(2,12)/0.2e1+( gamma mu) L(3,12); dy(65)=krho rho L(2,13)/0.2e1+( gamma mu) L(3,13); dy(66)=krho rho L(2,14)/0.2e1+( gamma mu) L(3,14); dy(67)=krho rho L(2,15)/0.2e1+( gamma mu) L(3,15); dy(68)=krho rho L(2,16)/0.2e1+( gamma mu) L(3,16); dy(69)=krho rho L(2,17)/0.2e1+( gamma mu) L(3,17); dy(70)=krho rho L(2,18)/0.2e1+( gamma mu) L(3,18); dy(71)=krho rho L(2,19)/0.2e1+( gamma mu) L(3,19)+rho ... Mf/0.2e1; 52

PAGE 60

dy(72)=krho rho L(2,20)/0.2e1+( gamma mu) L(3,20) E; dy(73)=krho rho L(2,21)/0.2e1+( gamma mu) L(3,21); dy(74)=krho rho L(2,22)/0.2e1+( gamma mu) L(3,22); dy(75)=krho rho L(2,23)/0.2e1+( gamma mu) L(3,23); dy(76)=krho rho L(2,24)/0.2e1+( gamma mu) L(3,24); % dT / dk !!!!!!!!!!!!!!!!!!!!! dy(77)=K ((knegi/kposi)nH)/(TnH+(knegi/kposi)nH) ... L(3,1)+( K E ((knegi/kposi)nH)/((TnH+(knegi/ ... kposi)nH)2) (TnH) nH/T (g/(T+Kg))+(g T/ ... (T+Kg)2) (d Text2/(Ee+Text (1+T/Ff))2/Ff) ... mu) L(4,1); dy(78)=K ((knegi/kposi)nH)/(TnH+(knegi/kposi)nH) ... L(3,2)+( K E ((knegi/kposi)nH)/((TnH+(knegi/ ... kposi)nH)2) (TnH) nH/T (g/(T+Kg))+(g T/ ... (T+Kg)2) (d Text2/(Ee+Text (1+T/Ff))2/Ff) ... mu) L(4,2); dy(79)=K ((knegi/kposi)nH)/(TnH+(knegi/kposi)nH) ... L(3,3)+( K E ((knegi/kposi)nH)/((TnH+(knegi/ ... kposi)nH)2) (TnH) nH/T (g/(T+Kg))+(g T/ ... (T+Kg)2) (d Text2/(Ee+Text (1+T/Ff))2/Ff) ... mu) L(4,3); dy(80)=K ((knegi/kposi)nH)/(TnH+(knegi/kposi)nH) ... L(3,4)+( K E ((knegi/kposi)nH)/((TnH+(knegi/ ... kposi)nH)2) (TnH) nH/T (g/(T+Kg))+(g T/ ... (T+Kg)2) (d Text2/(Ee+Text (1+T/Ff))2/Ff) ... mu) L(4,4); dy(81)=K ((knegi/kposi)nH)/(TnH+(knegi/kposi)nH) ... L(3,5)+( K E ((knegi/kposi)nH)/((TnH+(knegi/ ... kposi)nH)2) (TnH) nH/T (g/(T+Kg))+(g T/ ... (T+Kg)2) (d Text2/(Ee+Text (1+T/Ff))2/Ff) ... mu) L(4,5); dy(82)=K ((knegi/kposi)nH)/(TnH+(knegi/kposi)nH) ... L(3,6)+( K E ((knegi/kposi)nH)/((TnH+(knegi/ ... kposi)nH)2) (TnH) nH/T (g/(T+Kg))+(g T/ ... (T+Kg)2) (d Text2/(Ee+Text (1+T/Ff))2/Ff) ... mu) L(4,6)+K E ((knegi/kposi)nH) log((knegi/ ... kposi))/(TnH+(knegi/kposi)nH) K E ((knegi/ ... kposi)nH)/((TnH+(knegi/kposi)nH)2) ((TnH) ... log(T)+((knegi/kposi)nH) log((knegi/kposi))); 53

PAGE 61

dy(83)=K ((knegi/kposi)nH)/(TnH+(knegi/kposi)nH) ... L(3,7)+( K E ((knegi/kposi)nH)/((TnH+(knegi/ ... kposi)nH)2) (TnH) nH/T (g/(T+Kg))+(g T/ ... (T+Kg)2) (d Text2/(Ee+Text (1+T/Ff))2/ ... Ff) mu) L(4,7); dy(84)=K ((knegi/kposi)nH)/(TnH+(knegi/kposi)nH) ... L(3,8)+( K E ((knegi/kposi)nH)/((TnH+(knegi/ ... kposi)nH)2) (TnH) nH/T (g/(T+Kg))+(g T/ ... (T+Kg)2) (d Text2/(Ee+Text (1+T/Ff))2/ ... Ff) mu) L(4,8)+(g T/(T+Kg)2); dy(85)=K ((knegi/kposi)nH)/(TnH+(knegi/kposi)nH) ... L(3,9)+( K E ((knegi/kposi)nH)/((TnH+(knegi/ ... kposi)nH)2) (TnH) nH/T (g/(T+Kg))+(g T/ ... (T+Kg)2) (d Text2/(Ee+Text (1+T/Ff))2/ ... Ff) mu) L(4,9) (d Text/(Ee+Text (1+T/Ff))2); dy(86)=K ((knegi/kposi)nH)/(TnH+(knegi/kposi)nH) ... L(3,10)+( K E ((knegi/kposi)nH)/((TnH+(knegi/ ... kposi)nH)2) (TnH) nH/T (g/(T+Kg))+(g T/ ... (T+Kg)2) (d Text2/(Ee+Text (1+T/Ff))2/ ... Ff) mu) L(4,10)+(d Text2/(Ee+Text (1+T/ ... Ff))2 T/Ff2); dy(87)=K ((knegi/kposi)nH)/(TnH+(knegi/kposi)nH) ... L(3,11)+( K E ((knegi/kposi)nH)/((TnH+(knegi/ ... kposi)nH)2) (TnH) nH/T (g/(T+Kg))+(g T/ ... (T+Kg)2) (d Text2/(Ee+Text (1+T/Ff))2/Ff) ... mu) L(4,11); dy(88)=K ((knegi/kposi)nH)/(TnH+(knegi/kposi)nH) ... L(3,12)+( K E ((knegi/kposi)nH)/((TnH+(knegi/ ... kposi)nH)2) (TnH) nH/T (g/(T+Kg))+(g T/ ... (T+Kg)2) (d Text2/(Ee+Text (1+T/Ff))2/Ff) ... mu) L(4,12); dy(89)=K ((knegi/kposi)nH)/(TnH+(knegi/kposi)nH) ... L(3,13)+( K E ((knegi/kposi)nH)/((TnH+(knegi/ ... kposi)nH)2) (TnH) nH/T (g/(T+Kg))+(g T/ ... (T+Kg)2) (d Text2/(Ee+Text (1+T/Ff))2/Ff) ... mu) L(4,13); dy(90)=K ((knegi/kposi)nH)/(TnH+(knegi/kposi)nH) ... L(3,14)+( K E ((knegi/kposi)nH)/((TnH+(knegi/ ... kposi)nH)2) (TnH) nH/T (g/(T+Kg))+(g T/ ... (T+Kg)2) (d Text2/(Ee+Text (1+T/Ff))2/Ff) ... mu) L(4,14)+K E ((knegi/kposi)nH) nH/knegi/ ... (TnH+(knegi/kposi)nH) K E (((knegi/kposi)nH)2) ... 54

PAGE 62

/((TnH+(knegi/kposi)nH)2) nH/knegi; dy(91)=K ((knegi/kposi)nH)/(TnH+(knegi/kposi)nH) ... L(3,15)+( K E ((knegi/kposi)nH)/((TnH+(knegi/ ... kposi)nH)2) (TnH) nH/T (g/(T+Kg))+(g T/ ... (T+Kg)2) (d Text2/(Ee+Text (1+T/Ff))2/Ff) ... mu) L(4,15) K E ((knegi/kposi)nH) nH/kposi/ ... (TnH+(knegi/kposi)nH)+K E (((knegi/kposi)nH)2) ... /((TnH+(knegi/kposi)nH)2) nH/kposi; dy(92)=K ((knegi/kposi)nH)/(TnH+(knegi/kposi)nH) ... L(3,16)+( K E ((knegi/kposi)nH)/((TnH+(knegi/ ... kposi)nH)2) (TnH) nH/T (g/(T+Kg))+(g T/ ... (T+Kg)2) (d Text2/(Ee+Text (1+T/Ff))2/Ff) ... mu) L(4,16); dy(93)=K ((knegi/kposi)nH)/(TnH+(knegi/kposi)nH) ... L(3,17)+( K E ((knegi/kposi)nH)/((TnH+(knegi/ ... kposi)nH)2) (TnH) nH/T (g/(T+Kg))+(g T/ ... (T+Kg)2) (d Text2/(Ee+Text (1+T/Ff))2/Ff) ... mu) L(4,17); dy(94)=K ((knegi/kposi)nH)/(TnH+(knegi/kposi)nH) ... L(3,18)+( K E ((knegi/kposi)nH)/((TnH+(knegi/ ... kposi)nH)2) (TnH) nH/T (g/(T+Kg))+(g T/ ... (T+Kg)2) (d Text2/(Ee+Text (1+T/Ff))2/Ff) ... mu) L(4,18); dy(95)=K ((knegi/kposi)nH)/(TnH+(knegi/kposi)nH) ... L(3,19)+( K E ((knegi/kposi)nH)/((TnH+(knegi/ ... kposi)nH)2) (TnH) nH/T (g/(T+Kg))+(g T/ ... (T+Kg)2) (d Text2/(Ee+Text (1+T/Ff))2/Ff) ... mu) L(4,19); dy(96)=K ((knegi/kposi)nH)/(TnH+(knegi/kposi)nH) ... L(3,20)+( K E ((knegi/kposi)nH)/((TnH+(knegi/ ... kposi)nH)2) (TnH) nH/T (g/(T+Kg))+(g T/ ... (T+Kg)2) (d Text2/(Ee+Text (1+T/Ff))2/Ff) ... mu) L(4,20) T; dy(97)=K ((knegi/kposi)nH)/(TnH+(knegi/kposi)nH) ... L(3,21)+( K E ((knegi/kposi)nH)/((TnH+(knegi/ ... kposi)nH)2) (TnH) nH/T (g/(T+Kg))+(g T/ ... (T+Kg)2) (d Text2/(Ee+Text (1+T/Ff))2/Ff) ... mu) L(4,21); dy(98)=K ((knegi/kposi)nH)/(TnH+(knegi/kposi)nH) ... L(3,22)+( K E ((knegi/kposi)nH)/((TnH+(knegi/ ... kposi)nH)2) (TnH) nH/T (g/(T+Kg))+(g T/ ... (T+Kg)2) (d Text2/(Ee+Text (1+T/Ff))2/Ff) ... 55

PAGE 63

! mu) L(4,22) (T/(T+Kg)); dy(99)=K ((knegi/kposi)nH)/(TnH+(knegi/kposi)nH) ... L(3,23)+( K E ((knegi/kposi)nH)/((TnH+(knegi/ ... kposi)nH)2) (TnH) nH/T (g/(T+Kg))+(g T/ ... (T+Kg)2) (d Text2/(Ee+Text (1+T/Ff))2/Ff) ... mu) L(4,23)+(Text/(Ee+Text (1+T/Ff))); dy(100)=K ((knegi/kposi)nH)/(TnH+(knegi/kposi)nH) ... L(3,24)+( K E ((knegi/kposi)nH)/((TnH+(knegi/ ... kposi)nH)2) (TnH) nH/T (g/(T+Kg))+(g T/ ... (T+Kg)2) (d Text2/(Ee+Text (1+T/Ff))2/Ff) ... mu) L(4,24)+E ((knegi/kposi)nH)/(TnH+(knegi/ ... kposi)nH); 56

PAGE 64

Bibliography [1] Allen,G.D.,J.Herod,M.HolmesandV.Ervinetal(1999)Strategiesandguidelinesfromusing acomputeralgebrasystemintheclassroom.InternationalJournalEngng.Ed.Vol15,6:411-416 [2] Benson,DennisA.,IlleneKarsch-Mizrachi,DavidJ.Lipman,JamesOstellandEricW.Sayers. (2009)GenBank.NucleicAcidsResearch.Vol37:D26-D31 [3] Bhartiya,Sharad,SubodhRawoolandK.V.Venkatesh.(2003)Dynamicmodelof Escherichia coli tryptophanoperonshowsanoptimalstructuraldesign.EuropeanJournalofBiochemistry. Vol270:2644-2651 [4] Bisswanger,Hans.(2008)EnzymeKinetics-PrinciplesandMethods2e.Wiley-VCHGermany [5] Bliss,RichardD.,PageR.PainterandAllenG.Marr.(1982)Roleoffeedbackinhibitionin stabilizingtheclassicaloperon.JournalofTheoreticalBiology.Vol91:177-193 [6] Bliss,RichardD.(1979)ASpecicMethodforDeterminationofFreeTryptophanandEndogenousTryptophanin EscherichiaColi .AnalyticalBiochemistry.Vol93,390-398 [7] Briggs,G.E.,andJ.B.Haldane(1925)ANoteontheKineticsofEnzymeAction.Biochem Journal.Vol19,338-339 [8] Chaudhary,N.,S.BhartiyaandK.V.Venkatesh.(2007)System-levelanalysisoftryptophan regulationin Escherichiacoli performanceunderstarvedandwell-fedconditions.IETSystems Biology.Vol1,3:181-189 [9] Hornberg,JorritJ.,BerndBinder,FrankJBruggeman,BirgitSchoeberl,ReinhartHeinrich andHansV.Westerho!.(2005)ControloftheMAPKsignaling:fromcomplexitytowhatreally matters.Oncogene.Vol24:5533-5542 [10] Jacob,FrancoisandJacquesMonod(1961)Geneticregulatorymechanismsinthesynthesisof proteins.JournalofMolecularBiologyVol3,3:318-356 [11] Keener,JamesandJamesSneyd.(1998)MathematicalPhysiology.Springer.3-32 [12] Kitano,Hiroaki.(2002)Computationalsystemsbiology.NatureVol420:206-210 [13] Leis,JorgeR.andMarkA.Kramer.(1988)Thesimultaneoussolutionandsensitivityanalysis ofsystemsdescribedbyordinarydi!erentialequations.ACMTransactionsonMathematical Software.Vol14Issue1:45-60 57

PAGE 65

[14] Mackey,MichaelC.,MoisesSantillanandNecmettinYildirim.(2004)Modelingoperondynamics:thetryptophanandlactoseoperonsasparadigms.C.R.Biologies327:211-224 [15] Michaelis,L.andM.Menten(1913)Diekinetikderinvertinwirkung.BiochemistryZeitung.Vol 49,333-369 [16] Murray,J.D.(1977)Lecturesonnonlinear-di!erential-equationmodelsinbiology.OxfordUniversityPress [17] Murray,J.D.(2002)MathematicalBiologyI.AnIntroduction.Springer [18] Nair,AchuthsankarS.,(2007)ComputationalBiologyandBioinformatics:AGentleOverview. CommunicationsoftheComputerSocietyofIndia [19] NCBIHowGeneticSwitchesWork http : //www.ncbi.nlm.nih.gov/books/NBK 26872 / accessed:February2,2011 [20] NobelPrize http : //nobelprize.org/nobel p rizes/medicine/laureates/ 1965 / accessed:January 15,2011 [21] Palsson,Berhard.(2000)Thechallengesofinsilicobiology.NatureBiotechnology.Vol18:11471150 [22] Rabitz,H.,M.KramerandD.Dacol.(1983)SensitivityanalysisinChemicalKinetics.Annual ReviewofPhysicalChemistry.Vol34:419-461 [23] Reed,JenniferL.,BernhardO.Palsson.(2003)ThirteenYearsofBuildingConstraint-BasedIn SilicoModelsof Escherichiacoli .JournalofBacteriology.Vol185,9:2692-2699 [24] Saltelli,Andrea,MarcoRatto,StefanoTarantolaandFrancescaCampolongo.(2004)Sensitivity AnalysisforChemicalModels.ACS [25] Santillan,MoisesandMichaelC.Mackey.(2001)DynamicRegulationofthetryptophanoperon: Amodelingstudyandcomparisonwithexperimentaldata.PNAS.Vol98no4:1364-1369 [26] Segel,LeeA.,andMarshallSlemrod.(1989)TheQuasi-Steady-StateAssumption:ACase StudyinPerturbation.SIAMReview.Vol31,3:446-477 [27] Shampine,LawrenceF.,andMarkW.Reichelt.(1997)TheMatlabodeSuite.SIAM [28] Sinha,SomdattaandRamakrishnaRamaswamy(1988)ComplexBehaviouroftheRepressible Operon.Journaltheor.Biol.Vol132,307-318 [29] Ullmann,Agnes(2003)Originsofmoelcularbiology:atributetoJacquesMonod.ASMPress [30] Wilson,KevinS.,andPetervonHippel.(1995)Transcriptionalterminationatintrinsicterminators:TheroleoftheRNAhairpin.Proc.Natl.Acad.Sci.USA.Vol92:8793-8797 [31] Westerho!,HansV.andBernhardOPalsson.(2004)Theevolutionofmolecularbiologyinto systemsbiology.NatureBiotechnology.Vol22,10:1249-1252 58

PAGE 66

[32] Yanofsky,Charles.(2007)RNA-basedregulationofgenesoftryptophansynthesisanddegradation,inbacteria.RNA.Vol13(8):1141-1154 [33] Yanofsky,Charles.(1986)Highlevelproductionandrapidpuricationofthe E.coli trprepressor.NucleicAcidsResearch.Vol14No207851-7860 [34] Yanofsky,Charles,RichardKelleyandVirginiaHorn.(1984)Repressionisrelievedbeforeattenuationinthetrpoperonof Escherichiacoli astryptophanstarvationbecomesincreasingly severe.JournalofBacteriology.Vol158,No3:1018-1024 [35] Yanofsky,Charles.(1981)ThecompletenucleotidesequenceofthetryptophanoperonofEscherichiaColi.NucleicAcidsResearch.Vol9:6647-6668 59


ERROR LOADING HTML FROM SOURCE (http://ncf.sobek.ufl.edu//design/skins/UFDC/html/footer_item.html)