ERROR LOADING HTML FROM SOURCE (http://ncf.sobek.ufl.edu//design/skins/UFDC/html/header_item.html)

Reidemeister Torsion and the Classification of Three-Dimentional Lens Spaces

Permanent Link: http://ncf.sobek.ufl.edu/NCFE004437/00001

Material Information

Title: Reidemeister Torsion and the Classification of Three-Dimentional Lens Spaces
Physical Description: Book
Language: English
Creator: Raoux, Katherine
Publisher: New College of Florida
Place of Publication: Sarasota, Fla.
Creation Date: 2011
Publication Date: 2011

Subjects

Subjects / Keywords: Math
Lens Spaces
Topological Invariants
Genre: bibliography   ( marcgt )
theses   ( marcgt )
government publication (state, provincial, terriorial, dependent)   ( marcgt )
born-digital   ( sobekcm )
Electronic Thesis or Dissertation

Notes

Abstract: Topological invariants are crucial tools for solving classification problems in algebraic topology. Here, we state the definition of invariance and proceed to develop the fundamental group, homology of chain complexes and Reidemeister torsion in the context of classifying three-dimensional lens spaces. We will show that only the Reidemeister torsion is sufficient for classifying lens spaces up to homeomorphism. While this is a classical result, we develop most of the necessary theory and attempt to make the material accessible to advanced undergraduates.
Statement of Responsibility: by Katherine Raoux
Thesis: Thesis (B.A.) -- New College of Florida, 2011
Electronic Access: RESTRICTED TO NCF STUDENTS, STAFF, FACULTY, AND ON-CAMPUS USE
Bibliography: Includes bibliographical references.
Source of Description: This bibliographic record is available under the Creative Commons CC0 public domain dedication. The New College of Florida, as creator of this bibliographic record, has waived all rights to it worldwide under copyright law, including all related and neighboring rights, to the extent allowed by law.
Local: Faculty Sponsor: Mullens, David

Record Information

Source Institution: New College of Florida
Holding Location: New College of Florida
Rights Management: Applicable rights reserved.
Classification: local - S.T. 2011 R2
System ID: NCFE004437:00001

Permanent Link: http://ncf.sobek.ufl.edu/NCFE004437/00001

Material Information

Title: Reidemeister Torsion and the Classification of Three-Dimentional Lens Spaces
Physical Description: Book
Language: English
Creator: Raoux, Katherine
Publisher: New College of Florida
Place of Publication: Sarasota, Fla.
Creation Date: 2011
Publication Date: 2011

Subjects

Subjects / Keywords: Math
Lens Spaces
Topological Invariants
Genre: bibliography   ( marcgt )
theses   ( marcgt )
government publication (state, provincial, terriorial, dependent)   ( marcgt )
born-digital   ( sobekcm )
Electronic Thesis or Dissertation

Notes

Abstract: Topological invariants are crucial tools for solving classification problems in algebraic topology. Here, we state the definition of invariance and proceed to develop the fundamental group, homology of chain complexes and Reidemeister torsion in the context of classifying three-dimensional lens spaces. We will show that only the Reidemeister torsion is sufficient for classifying lens spaces up to homeomorphism. While this is a classical result, we develop most of the necessary theory and attempt to make the material accessible to advanced undergraduates.
Statement of Responsibility: by Katherine Raoux
Thesis: Thesis (B.A.) -- New College of Florida, 2011
Electronic Access: RESTRICTED TO NCF STUDENTS, STAFF, FACULTY, AND ON-CAMPUS USE
Bibliography: Includes bibliographical references.
Source of Description: This bibliographic record is available under the Creative Commons CC0 public domain dedication. The New College of Florida, as creator of this bibliographic record, has waived all rights to it worldwide under copyright law, including all related and neighboring rights, to the extent allowed by law.
Local: Faculty Sponsor: Mullens, David

Record Information

Source Institution: New College of Florida
Holding Location: New College of Florida
Rights Management: Applicable rights reserved.
Classification: local - S.T. 2011 R2
System ID: NCFE004437:00001


This item is only available as the following downloads:


Full Text

PAGE 1

ReidemeisterTorsionandtheClassicationof Three-DimensionalLensSpaces KATHERINERAOUX AThesis SubmittedtotheDivisionofNaturalSciences NewCollegeofFlorida inpartialfulllmentoftherequirementsforthedegree BachelorofArts UnderthesponsorshipofProfessorDavidMullins Sarasota,Florida May,2011

PAGE 2

i Acknowledgments Mostofthisthesiswouldnothavebeenpossiblewithoutmuchguidanceandsupport fromProfessorDavidMullins.IwouldalsoliketothankProfessorPatrickMcDonald forhisadviceandwordsofwisdomthroughoutmyundergraduatecareer.BeforeI cametoNewCollege,Ihadnoideawhatitmeanttostudymath.Ifithadn'tbeen forthem,Idon'tthinkIeverwouldhave.Finally,Ican'tforgettothankmyparents fordoingallofthatstuthatparentsdo,Augieforkeepingourparentsentertained" inmyabsence,andIanFinneranforkeepingmesane.

PAGE 3

ii REIDEMEISTERTORSIONANDTHECLASSIFICATIONOF THREE-DIMENSIONALLENSSPACES KatherineRaoux NewCollegeofFlorida,2011 ABSTRACT Topologicalinvariantsarecrucialtoolsforsolvingclassicationproblemsinalgebraictopology.Here,westatethedenitionofinvarianceandproceedtodevelop thefundamentalgroup,homologyofchaincomplexesandReidemeistertorsionin thecontextofclassifyingthree-dimensionallensspaces.Wewillshowthatonlythe Reidemeistertorsionissucientforclassifyinglensspacesuptohomeomorphism. Whilethisisaclassicalresult,wedevelopmostofthenecessarytheoryandattempt tomakethematerialaccessibletoadvancedundergraduates. DavidMullins DivisionofNaturalSciences

PAGE 4

Contents Chapter1.Introduction1 Chapter2.BasicPropertiesofLensSpaces3 Chapter3.NecessaryAlgebraicTopology11 Chapter4.ReidemeisterTorsion17 1.Torsionofanisomorphismofvectorspaces17 2.Torsionofanacycliccomplex18 Chapter5.TorsionofaniteCWcomplex31 Chapter6.ClassicationofLensSpaces36 1.R-TorsionofLm,n36 2.HomotopyClassication38 3.HomeomorphismClassication43 Chapter7.Conclusion47 AppendixA.FiniteCWcomplexes48 Bibliography51 iii

PAGE 5

CHAPTER1 Introduction Amaingoalofalgebraictopologyistoclassifyspacesuptohomeomorphism. However,asthiscanbeverydicult,weoftensettleforcoarserformsofclassication, suchashomotopy.Oftenelusive,homeomorphismclassicationproblemshavebeen investigatedsincePoincarerstconjecturedthatanythree-manifoldhomotopictoa three-sphereis,infact,homeomorphic.Thefactthathissimplystatedconjecture remainedunsolvedforoverahundredyearstestiestothedicultyofattainingsuch classications. Forspacestobehomeomorphic,onemustbeabletoconstructacontinuous,bijective,map,betweenthetwospaces,suchthatthismapalsohasacontinuousinverse. Theinherentdicultyofconstructingsuchmapsoftenleadsmathematicianstoapproachproblemsofclassicationfromtheoppositeperspective,tryingtoshowthat twospacesarenothomeomorphic.Helpfultoolsinthisprocessarecalledhomeomorphisminvariants.Ahomeomorphisminvariantisafunction f ,suchthatiftwospaces X and Y arehomeomorphic, f X = f Y .Thus,ifwecanshowthat f X 6 = f Y wewillknowthat X and Y aredenitelynothomeomorphic.Inadditiontohaving homeomorphisminvariants,wecanalsondcoarserinvariants,suchashomotopy invariants.Therefore,understandingdierenttypesofinvariantsiscrucialtothe studyofalgebraictopology,andespeciallyimportantforclassicationproblems.In thiscontext,lensspacesareofparticularinterestsincethemostcommoninvariants suchasthefundamentalgroupandhomologygroupsproveinsucientforclassication.Thelackofawaytodistinguishthesespacesledtothedevelopmentofanew invariant:Reidemeistertorsion. 1

PAGE 6

1.INTRODUCTION2 Inthemidnineteen-thirties,KurtReidemeisterbegantodevelopthetheoryof torsionandeventuallyusedittoclassifythreedimensionallensspaces.But,althoughReidemeistersucceededinsolvingtheclassicationproblem,itremainedto showwhethertorsionwasactuallyahomeomorphisminvariant.Whiteheadbecame particularlyobsessedwiththisproblemandafterpublishingafalseproofofhomotopyinvariance,hediscoveredthatinfact,torsionisnotahomotopyinvariantatall. Thereexistcertainlensspacesthatarehomotopic,buthavedierentReidemeister torsion.HisfurtherinvestigationsintothesubtletiesinvolvedledWhiteheadtodevelopsimplehomotopytheory,andnallyin1974Chapmanprovedamuchstronger result;thatReidemeistertorsionishomeomorphisminvariant. Thisthesisaimstodevelopthealgebraictopologynecessarytoclassifythree dimensionallensspaces.Whilethematerialhasbeenstudiedinthepast,Ihopeto reformulateitandmakeitmoreaccessibletoundergraduatemathematicians.Wewill focusondevelopingameansofcomputingReidemiestertorsionforthepurposeof classifyingthreedimensionallensspaces.Afterintroducingthefundamentalgroup, wewilldenethehomologyofachainandintroduceCWcomplexes.Thenthe denitionoftorsionwillbegivenforacycliccomplexesandtheassociationofan acycliccomplexwithaCWcomplexwillallowustocomputethetorsionofarbitrary niteCWcomplexes.Afewexampleswillclarifythedetailsofthisprocessand nally,wewillusetorsiontoclassifythreedimensionallensspacesuptohomotopy andhomeomorphism.Wewillalsostate,butnotproveChapman'sresult. Mostoftherelevantalgebraictopologicalresultswillbestatedandreferenced. However,theresultsmostcrucialforclassifyinglensspaceswillbeprovedandreferencedwhenappropriate.

PAGE 7

CHAPTER2 BasicPropertiesofLensSpaces Webeginbydeningthethreesphereasasubsetof C C Definition 0.1 A three-sphere isaclosedoriented3-dimensionalmanifold, S 3 = f z;w 2 C C : j z j 2 + j w j 2 =1 g Alensspaceisaquotientspaceofathree-sphere,whichmeansthattocreatea lensspace,wetakecertainpointsinthethreesphereandthinkaboutglueing"them together.Moreformally, Definition 0.2 A lensspace isaclosedoriented3-dimensionalmanifold, L m;n = S 3 = Z m = f z;w 2 C C jj z j 2 + j w j 2 =1 g = z;w z; n w where isaprimitive mth rootofunityand gcd m;n =1. Example 0.3 Considerthespace L ; 2.Since n =5, 5 =1sothatwehave anequivalenceclass,madeupofthepointsweglue"together, z;w z; 2 w 2 z; 4 w 3 z; 1 w 4 z; 3 w foranyorderedpair z;w in S 3 Nowthatwehavedenedlensspaces,theusualtopologicalquestionofclassicationarises.However,inordertoclassifyspacesofanysort,wemustrstdenewhat itmeansfortwospacestobethesame. Definition 0.4 IfXandYaretwotopologicalspaces,wesayXis homeomorphic toYifthereexistsacontinuousbijectivemap, f : X Y suchthat f )]TJ/F28 7.9701 Tf 6.587 0 Td [(1 isalso continuous. 3

PAGE 8

2.BASICPROPERTIESOFLENSSPACES4 Notethathomeomorphismisanequivalencerelation.WhenwethinkofXand Yasbeingequivalentinatopologicalsensewemeanhomeomorphic,however,itis generallyverydiculttoconstructanexplicitmapfromXtoY.Therefore,weoften settleforlessstringentrequirements,suchashomotopy. Definition 0.5 Let X Y betopologicalspaces..Wesaythat X is homotopic to Y iftherearecontinuousmaps f : X Y g : Y X F : X [0 ; 1]: X and G : Y [0 ; 1] Y suchthat, F x; 0= g f x and F x; 1= x forany x 2 X G y; 0= f g y and G y; 1= y forany y 2 Y Itisnothardtoseethathomotopyisanequivalencerelationandthatif X and Y arehomeomorphic,theywillalwaysbehomotopic.Often,amoreusefulwayofsaying thisisthatif X and Y arenothomotopic,thentheyarenothomeomorphic.The converseisobviouslyfalse.Wecanseethatadisk, D 2 = f e i :0 1and0 < 2 g ,ishomotopictoapoint,say f 0 g ,byconsideringmaps, f : D 2 !f 0 g : denedby f e i =0. and g : f 0 g! D 2 denedby g =0. Then f g = id: onthepoint f 0 g andwecandene F : D 2 [0 ; 1]: D 2 suchthat F e i ;t = te i ThenFiscontinuousand F e i ; 0=0= g f e i F e i ; 1= e i However,thereisnowaytocreateabijectivemapfrom D 2 to f 0 g since D 2 hasan uncountablenumberofpoints.Thus,thedisk D 2 isnothomeomorphictothepoint f 0 g Inthecaseoflensspaces,wewouldliketobeabletodistinguishhomotopyclasses, and,especially,homeomorphismclasses.Tobeginthisprocess,wewillintroduce

PAGE 9

2.BASICPROPERTIESOFLENSSPACES5 andthenprovetheinadequacyoftheusualtopologicalinvariantsforclassifyinglens spaces. 0.1.FundamentalGroupsandCoveringSpaces. Thefollowingdevelopmentoffundamentalgroupsandcoveringspacesistakenfrom[ 3 ],inparticular, Chapters2and5.Therefore,wewillstatethedenitionsandtheoremsprovingonly whatisessentialforthepurposeofclassifyinglensspaces. A path isacontinuousmap :[ a;b ] X .Apathiscalled closed ora loop ifthe endpointscoincide,i.e. a = b = x .Suchaloopissaidtobe based at x .Two loopsbasedatthesamepoint x 1 and 2 areconsidered homotopic ifthereexistsa continuousmap :[ a;b ] [0 ; 1] X suchthat, t; 0= 1 t t; 1= 2 t for t 2 [ a;b ]and a;s = b;s = x forall s 2 [0 ; 1].If isaloopbasedatthepoint x ,thenthesetofallloopshomotopic to formanequivalenceclass,[ ].Thesetofequivalenceclassesofloopsbasedat apoint x 2 X formsagroupcalledthe fundamentalgroup ofXandisdenoted, 1 X;x .Thegroupoperationismultiplication,denedforpathsandconsequently loops,asfollows: Let and bepathsin X withtheterminalpointof beingtheinitialpointof ,i.e. b = a .Denetheproduct, :[ a;b ] X by, t = 8 < : t 0 t 1 2 ; t )]TJ/F24 11.9552 Tf 11.955 0 Td [(1 1 2 t 1 : Thismultiplicationisonlydenedwhentheinitialpointofonepathcoincideswith theterminalpointoftheotherpath.However,thismultiplicationisnot,ingeneral, associative,nordowehaveidentityelementsorinverses.So,inordertoimposea groupstructureonthesetofloops,werstlookatequivalenceclassesofhomotopic paths.Now,whenconsideringtheseequivalenceclasses,wedogetassociativity.

PAGE 10

2.BASICPROPERTIESOFLENSSPACES6 Considerpaths ; and suchthattheterminalpointof istheinitialpoint of andtheterminalpointof istheinitialpointof .Thenthereexistsamap F :[ a;b ] [0 ; 1] X denedby, F t;s = 8 > > > < > > > : 4 t 1+ s 0 t s +1 4 ; t )]TJ/F24 11.9552 Tf 11.955 0 Td [(1 )]TJ/F30 11.9552 Tf 11.955 0 Td [(s s +1 4 t s +2 4 ; )]TJ/F28 7.9701 Tf 13.151 5.698 Td [(4 )]TJ/F31 7.9701 Tf 6.587 0 Td [(t 2 )]TJ/F31 7.9701 Tf 6.587 0 Td [(s s +2 4 t 1 F iscontinuousand F t; 0=[ ] t and F t; 1=[ ] t .Thus, F isa homotopywhichimpliestheequivalence, If isdenedasabove,wecanalsoconstructmapsthatactliketheidentity whenmultipliedwith .Aright-handedidentitywilllooklikethepath e b where e b = b forall t 2 [0 ; 1].Then[ e b ] [ ].Noticethatwhenconsidering loops,right-handedidentitieswillbethesameasleft-handedidentities.Wealso dene[ ] )]TJ/F28 7.9701 Tf 6.587 0 Td [(1 tobetheclassofpathsstartingat b andendingat a .These propertiesgiveusthenecessarygroupstructurefor 1 X;x Ingeneral,anycontinuousmap f : X Y willinduceahomomorphismbetween thefundamentalgroupsofthe X and Y ,denoted, f : 1 X;x 0 1 Y;y 0 ,where y 0 = f x 0 anddenedby f [ ]=[ f ]. Definition 0.6 Let X beatopologicalspace,arcwiseconnectedandlocally arcwiseconnected.A coveringspace of X isapair, ~ X;p ,consistingofaspace ~ X andacontinuousmap, p : ~ X X ,calleda coveringmap suchthatthefollowing conditionholds:Eachpoint x 2 X hasanarcwiseconnectedopenneighborhood U suchthateacharccomponentof p )]TJ/F28 7.9701 Tf 6.587 0 Td [(1 U ismappedtopologicallyonto U by p Interestingproblemsarisewhenoneconsiderstheinverseimageofaloopina spaceXwhenitis lifted toacoveringspace.Ingeneral,loopsdonotremainloops, butareratherliftedtopaths. So,givenaspace X ,whatkindsofspaceswillcover X ?Trivially,wecansee that X willalwayscoveritself.Ingeneralhowever,wewouldliketoknowwhatother

PAGE 11

2.BASICPROPERTIESOFLENSSPACES7 spaceswillcover X .Additionally,since p isacontinuousmap,itinducesamap onthefundamentalgroups.Sowewouldalsoliketoseehowthemap p relatesto coveringmaps.Thefollowingtheoremgivestherelationbetweenthetwo. Theorem 0.7 Let ~ X;p beacoveringspaceofX.Let Y beaconnectedand locallyarcwiseconnectedspacesuchthat y 0 2 Y ~ x 0 2 ~ X ,and x 0 = p ~ x 0 .Givena map : Y X ,thereexistsauniquelifting, ~ : Y ~ X ifandonlyif 1 Y;y 0 p 1 ~ X; ~ x 0 ~ X Y X p ~ Since X alwayscoversitself,wecaneasilyseethatanarbitrarycontinuousmap f : Y X willbeacoveringmapifandonlyif f 1 Y;y 0 1 X;x 0 where x 0 = f y 0 .Thereforewhen 1 X;x 0 =1,theonlypossiblecoveringspacesfor X mustalsohave 1 X;x 0 =1.Suchspacesarecalled simplyconnected .Inparticular, when X issimplyconnected,itsonlycoveringspacewillbeitself. Definition 0.8 Let ~ X;p beacoveringspaceof X suchthat ~ X issimply connected.Thenif ~ X 0 ;p 0 isanyothercoveringspaceof X ,thereexistsahomomorphism, of ~ X;p onto ~ X 0 ;p 0 ,suchthat ~ X; isacoveringspaceof ~ X 0 .Sucha space, ~ X iscalleda universalcoveringspace .Moresimply,auniversalcover ~ X isa coveringspaceofanycoveringspaceof X Aspaceissaidtobe semilocallysimplyconnected ifeachpoint x 2 X hasa neighborhood U suchthatthehomomorphism 1 U;x 1 X;x istrivial. Theorem 0.9 Let X beaconnected,locallypathconnectedandsemilocallysimply connectedspace.Thenthereexistsauniversalcoveringof X .

PAGE 12

2.BASICPROPERTIESOFLENSSPACES8 Asimpleexamplewillclarifywhyweneedtheseeminglyverbosequalication, semilocallysimplyconnected,for X tohaveauniversalcover. Example 0.10 Considerasubspace X oftheplane, R 2 ,madeupofaninnite sequenceofcircleswiththeirradiiconvergingtozero,suchthatthecircleintersect atpreciselyonepoint, x 0 x 0 Noticethatthisspaceisnotsemilocallysimplyconnected,sinceanyneighborhood aroundthepoint x 0 willcontainanontrivialloop.Toconstructauniversalcoverfor X weconsiderseveringtheloops,sothattheresultingspaceiscontractableand connected.Certainlyifwecutat x 0 theresultingspacewillnotbeconnected.Ifwe cutatanyotherpart,sayaline, x 0 Thennomatterhowcloseto x 0 theheightofthelinegets,therewillalwaysbeloops leftunsevered.Thus, X willnothaveauniversalcoveringspace. Consideracoveringspace ~ X;p of X .Bythedenitionofcoveringspace,for anyarcwiseconnectedneighborhood U of x 2 X ,eachpreimage p )]TJ/F28 7.9701 Tf 6.586 0 Td [(1 U ishomeomorphicto U .Wedenotethesetofpreimagesby[ p )]TJ/F28 7.9701 Tf 6.587 0 Td [(1 U ].Sincewecanmakethe

PAGE 13

2.BASICPROPERTIESOFLENSSPACES9 neighborhood U arbitrarilysmall,wecanalsotalkaboutthesetofpointsthatare mappedto x by p ,[ p )]TJ/F28 7.9701 Tf 6.587 0 Td [(1 x ]. Infact,thereisanaturalactionofthegroup 1 X;x 0 ontheset[ p )]TJ/F28 7.9701 Tf 6.587 0 Td [(1 x 0 ].Choose apreferred"preimage,~ x 0 2 [ p )]TJ/F28 7.9701 Tf 6.586 0 Td [(1 x 0 ] ~ X .Thenthereexistsapathclass~ 2 ~ X suchthat~ =~ x 0 and p ~ = .Thus,wedenetheaction ~ x 0 =~ Sothattheactiontakes~ x totheterminalpointof~ Ingeneralthisactionwillbetransitiveandthus,theset[ p )]TJ/F28 7.9701 Tf 6.587 0 Td [(1 x 0 ]formsacoset space,calleda right X;x 0 -space ,[ p )]TJ/F28 7.9701 Tf 6.587 0 Td [(1 x 0 ]= f gK : g 2 1 X;x 0 g where K = f g 2 1 X;x 0 : g x 0 = x 0 g isthestabilizerof x 0 in ~ X .Inparticular,if K = f 1 g then[ p )]TJ/F28 7.9701 Tf 6.587 0 Td [(1 x 0 ]= 1 X;x 0 Definition 0.11 LetGbeagroupofautomorphismsofaspaceX.ThenGis properlydiscontinuous ifforall x 2 X thereisanopenneighborhood U of x such thatthesets gU g 2 G ,arepairwisedisjoint. Inparticular,ifGisproperlydiscontinuous,thenGhasnoxedpoints. Thefollowingtheoremwillbethekeytocomputingthefundamentalgroupofany lensspace. Theorem 0.12 IfXissimplyconnectedandGisagroupofproperlydiscontinuousautomorphismsofX,then 1 X=G = G Proof. Considerthequotientmap, p : X X=G .SinceGisproperlydiscontinuous,foranyneighborhood U in X=G theset p )]TJ/F28 7.9701 Tf 6.587 0 Td [(1 U mapstopologicallyontoU, thus X;p actsauniversalcoverfor X=G .Inparticular,theset[ p )]TJ/F28 7.9701 Tf 6.586 0 Td [(1 U ]willbe isomorphictotheset, f gU : g 2 G g andthus,ifwechoose U sothat x 0 2 U ,then [ p )]TJ/F28 7.9701 Tf 6.586 0 Td [(1 U ]=[ p )]TJ/F28 7.9701 Tf 6.587 0 Td [(1 x 0 ]= f gK : g 2 1 X=G;x 0 g for K = f g 2 1 X=G;x 0 : g x 0 = x 0 g .So,if g 2 K then g mustbealoopin X .Since, X issimplyconnectedwe concludethat K = f 1 g andthus, G = 1 X=G;x 0

PAGE 14

2.BASICPROPERTIESOFLENSSPACES10 Usingthetheorem0.12wecannoweasilycomputethefundamentalgroupofany lensspace. 1 L m;n = 1 S 3 = Z m = Z m Thus,thefundamentalgroupofalensspace L m;n dependsonlyonthevalueof m sounlessthevalueof n hasnoimpactonthestructureofthespacewhichwewill eventuallyproveisn'tthecase,thefundamentalgroupdoeslittletohelpdistinguish homotopyorhomeomorphismclasses.

PAGE 15

CHAPTER3 NecessaryAlgebraicTopology A chaincomplex isasequenceofabeliangroupsandhomomorphisms, C : ::: C n C n )]TJ/F28 7.9701 Tf 6.586 0 Td [(1 ::: @ n +1 @ n @ n )]TJ/F28 7.9701 Tf 6.586 0 Td [(1 suchthat @ n @ n +1 =0foralln.Themap @ satisfying @ 2 =0iscalleda chainmap Thisconditionsaysthat im @ n +1 ker @ n ,sinceif x 2 im @ n +1 thenthereexists y suchthat @ n +1 y = x .Thus, @ n x = @ n @ n +1 y =0,whichimplies x 2 ker @ n Wedenethe nthsingularhomology ofachaincomplextobe H n C = ker @ n =im @ n +1 Usingchaincomplexestocomputetheirhomologywewillattempttogivean intuitiveexplanationofCW-complexes,andreferthereadertotheAppendixand[ 6 ], Chapters1and2foramoreformalexplanation. Ingeneralcomputingthehomologyofanarbitrarytopologicalspace,X,canbe dicult.However,inthecasewhenXiscompactandHausdor,wethinkaboutX asbeingmadeupofpieces,eachhomeomorphictoann-ball.Suchpiecesarecalled n-cells .Algebraically,wecanthinkofeachn-cellasafree-abeliangroupisomorphic to Z .Thewayinwhichthen-cellsaregluedtothe n )]TJ/F24 11.9552 Tf 11.593 0 Td [(1-cellsgivesusthenecessary boundarymapstoformchaincomplexes. Consider,forexample, S 2 .Wecanthinkof S 2 asbeingmadeupofone0-celland one2-cell.Theassociatedchaincomplexisverysimple, 0 Z 0 Z 0 @ 2 @ 1 @ 0 11

PAGE 16

3.NECESSARYALGEBRAICTOPOLOGY12 Thus, H 0 S 2 = ker @ 0 =im @ 1 = Z = 1= Z .Similarly, H 1 S 2 =0and H 2 S 2 = Z Generalizingthisidea,wecanseethat S n canalwaysbethoughtofasann-cellglued toa0-cell,yieldingthefollowingproposition: Proposition 0.13 Foranyinteger n 0 H k S n = 8 < : Z k =0 ;n 0 k 6 =0 ;n However,whilethehomologyisuniqueforagivenspace,CW-decompositionsare not.ConsiderthefollowingCW-decompositionof S 3 E 0 0 = ; 0 E 0 1 = )]TJ/F24 11.9552 Tf 9.299 0 Td [(1 ; 0 E 1 0 = f e i ; 0; 2 [0 ; ] g E 1 1 = f e i ; 0; 2 [ ; 2 ] g E 2 0 = f z;s ; s 2 [0 ; 1] g E 2 1 = f z; )]TJ/F30 11.9552 Tf 9.298 0 Td [(s ; s 2 [0 ; 1] g E 3 0 = f z;w ; arg w 2 [0 ; ] g E 3 1 = f z;w ; arg w 2 [ ; 2 ] g Wecantrytovisualizesuchdecompositionbyconsideringadiagram, E 0 0 = ; 0 )]TJ/F24 11.9552 Tf 9.298 0 Td [(1 ; 0= E 0 1 E 1 0 E 2 0 ; 1 ; )]TJ/F24 11.9552 Tf 9.298 0 Td [(1 ;w z; 0

PAGE 17

3.NECESSARYALGEBRAICTOPOLOGY13 inwhichtheverticallinerepresentsthecircle j w j =1identiedatthepointatinnity, andthecirclerepresentsthecircle j z j =1. Thisdecompositionalsogivesusanassociatedchaincomplex, 0 ~ C 3 ~ C 2 ~ C 1 ~ C 0 0 @ 3 @ 2 @ 1 @ 0 whereeach ~ C i = Z Z Computingtheboundaryofeachgeneratorweget, @ 0 E 0 0 =0 @ 0 E 0 1 =0 @ 1 E 1 0 = E 0 1 )]TJ/F30 11.9552 Tf 11.956 0 Td [(E 0 0 @ 1 E 1 1 = E 0 0 )]TJ/F30 11.9552 Tf 11.955 0 Td [(E 0 1 @ 2 E 2 0 = E 1 0 + E 1 1 @ 2 E 2 1 = E 1 0 + E 1 1 @ 3 E 3 0 = E 2 1 )]TJ/F30 11.9552 Tf 11.955 0 Td [(E 2 0 @ 3 E 3 1 = E 2 0 )]TJ/F30 11.9552 Tf 11.955 0 Td [(E 2 1 Thus, ker @ 0 = ~ C 0 .Theimageof @ 1 canbefoundbycomputing @ 1 aE 1 0 + bE 1 1 = a )]TJ/F30 11.9552 Tf 12.248 0 Td [(b E 0 1 )]TJ/F30 11.9552 Tf 12.248 0 Td [(E 0 0 where a;b 2 Z .Thus, im @ 1 = f r; )]TJ/F30 11.9552 Tf 9.298 0 Td [(r g Z Z .Additionally, @ 1 aE 1 0 + bE 1 1 =0whenever a = b sothat ker @ 1 = Z Similarly, @ 2 aE 2 0 + bE 2 1 = a + b E 1 0 + E 1 1 .Thus, im @ 2 = Z .Also, @ 2 aE 2 0 + bE 2 1 =0whenever a = )]TJ/F30 11.9552 Tf 9.299 0 Td [(b sothat ker @ 2 = Z Finally, @ 3 aE 3 0 + bE 3 1 = a )]TJ/F30 11.9552 Tf 10.047 0 Td [(b E 2 0 )]TJ/F30 11.9552 Tf 10.047 0 Td [(E 2 1 .Sowehave im @ 3 = f r; )]TJ/F30 11.9552 Tf 9.299 0 Td [(r g Z Z Finally,since @ 3 aE 3 0 + bE 3 1 =0whenever a = b ker @ 3 = Z Puttingallofthisinformationtogether,wecomputethat H 0 S 3 = Z Z = f r; )]TJ/F30 11.9552 Tf 9.298 0 Td [(r g = Z H 1 S 3 = Z = Z =0, H 2 S 3 =0,and H 3 S 3 = Z ,justaswe wouldexpect. Obviously,computingthesemapsisharderthancomputingthemapsforthe decompositionof S 3 withone0-cellandone3-cell,however,thisdecompositionwill beusefulforcomputingthehomologyofthequotientspace L ; 1.Infact,this CW-decompositionrespectstheactionof Z 2 onpoints z;w whichmeansmaking identication z;w )]TJ/F30 11.9552 Tf 9.299 0 Td [(z; )]TJ/F30 11.9552 Tf 9.298 0 Td [(w ,willcorrespondtoglueingthecell E i 0 tothecell E i 1

PAGE 18

3.NECESSARYALGEBRAICTOPOLOGY14 foreach i .SothatourCW-decompositionfor L ; 1consistsofone0-cell,one1-cell, one2-cell,andone3-cell. Let : S 3 L ; 1bethequotientmap.Thendene E i j = E i theneach E i isthebasisfor C i andthefollowingdiagramwillcommute. 0 ~ C 3 ~ C 2 ~ C 1 ~ C 0 0 0 C 3 C 2 C 1 C 0 0 @ 3 @ 2 @ 1 @ 0 @ 3 @ 2 @ 1 @ 0 whereeach ~ C i isasbeforeand C i = Z Nowwecanusethepreviouslycomputedboundarymapstocomputethenew boundarymaps.Wechoose E i 0 tobethepreferredpre-imageof E i foreach C i ,but wecomputingintermsof E i 1 wouldyieldthesameresult. @ 0 E 0 0 = @ 0 E 0 0 =0 @ 1 E 1 0 = @ 1 E 1 0 = E 0 1 )]TJ/F30 11.9552 Tf 11.955 0 Td [(E 0 0 =0 E 0 @ 2 E 2 0 = @ 2 E 2 0 = E 1 0 + E 1 1 =2 E 1 @ 3 E 3 0 = @ 3 E 3 0 = E 2 1 )]TJ/F30 11.9552 Tf 11.955 0 Td [(E 2 0 =0 E 2 Thuswecaneasilyseethat, ker @ 0 = C 0 ker @ 1 = Z ker @ 2 =0 ker @ 3 = Z im @ 1 =0 im @ 2 =2 Z im @ 3 =0 Sothat H i L m;n = H i S 3 for i 6 =1and H 1 L m;n = Z 2 ComputingtheCW-complexandhomologyforagenerallensspaceworksvery similarly. Example 0.14CWcomplexofLensSpace SincewedenedLensspacesin termsofaquotientof S 3 ,wewillconstructaCWcomplexfor L m;n byrst constructingaCWcomplexfor S 3 whichrespectsthequotientmap.

PAGE 19

3.NECESSARYALGEBRAICTOPOLOGY15 Consider L m;n .Denotethejthrootofunity, j .For j 2 Z m dene, E 0 j = j ; 0 E 1 j = f e i ; 0 2 S 3 ; 2 j m 2 j +1 m g E 2 j = f z;s j 2 S 3 ; s 2 R ; j z j 2 + s 2 =1 g E 3 j = f z;w 2 S 3 ; 2 j m arg w 2 j +1 m g Theneach E k j ishomeomorphictoaclosed k -ball.Noticethatundertheidentication, z;w z; n w ,thepointsintheset f E 0 j g m )]TJ/F28 7.9701 Tf 6.587 0 Td [(1 j =0 willbeidentied.Similarlythesets f E k j g m )]TJ/F28 7.9701 Tf 6.586 0 Td [(1 j =0 willbeidentiedforeach k respectively.Thus,thecollection f E k j g 0 k 3 j 2 Z m formsaCWdecompositionof S 3 whichrespectstheactionof Z m .Sincealensspaces ifformedbyglueingtheseballstogether,ithasaCWdecompositioncomposedof one0-cell,one1-cell,one2-cell,one3-cell. Thus,tocomputethehomologywelookatthechaincomplex, 0 ~ C 3 ~ C 2 ~ C 1 ~ C 0 0 0 C 3 C 2 C 1 C 0 0 @ 3 @ 2 @ 1 @ 0 @ 3 @ 2 @ 1 @ 0 whereeach ~ C i = Z m C i = Z and : S 3 L m;n isdenedongeneratorsby E i j = E i Inordertocomputetheboundarymaps,weagainlookatour S 3 decomposition andcompute, @ 1 E 1 j = E 0 j +1 )]TJ/F30 11.9552 Tf 11.955 0 Td [(E 0 j @ 2 E 2 j = m )]TJ/F28 7.9701 Tf 6.587 0 Td [(1 X k =0 E 1 k @ 3 E 3 j = E 2 j +1 )]TJ/F30 11.9552 Tf 11.956 0 Td [(E 2 j

PAGE 20

3.NECESSARYALGEBRAICTOPOLOGY16 Againchoosing E i 0 asourpreferredpre-image,wecompute, @ 0 E 0 0 = @ 0 E 0 0 =0 @ 1 E 1 0 = @ 1 E 1 0 = E 0 1 )]TJ/F30 11.9552 Tf 11.955 0 Td [(E 0 0 =0 E 0 @ 2 E 2 0 = @ 2 E 2 0 = E 1 0 + E 1 1 + ::: + E 1 m )]TJ/F28 7.9701 Tf 6.587 0 Td [(1 = mE 1 @ 3 E 3 0 = @ 3 E 3 0 = E 2 1 )]TJ/F30 11.9552 Tf 11.955 0 Td [(E 2 0 =0 E 2 Thus, H 0 L m;n = Z H 1 L m;n = Z m H 2 L m;n =0 H 3 L m;n = Z Asmentionedearlier,thisgivesnonewinformationforcomparing L m;n 0 to L m;n 1 .Thus,wehavedemonstratedthenecessityforanerinvariantandwill nowintroduceReidemeistertorsion.

PAGE 21

CHAPTER4 ReidemeisterTorsion 1.Torsionofanisomorphismofvectorspaces Thisexampleisborrowedfrom[ 4 ].Consideranisomorphismof n dimensional vectorspaces, f : U 0 )167(! U 1 .Ifwechoosebases, u 0 and u 1 ,thenwecanrepresent themap f asan n n matrix, A .Wedenethe torsion ofthemap f ,withrespect tochoiceofbases u 0 and u 1 ,tobe f; u 0 ; u 1 := det A )]TJ/F28 7.9701 Tf 6.586 0 Td [(1 Whilethismayseemarbitrary,thetorsionasdeneddependsonlyonthechoiceof bases. Considerachangeofbases, u 0 7! v 0 u 1 7! v 1 .Thenthereareassociatedchange ofbasismatrices, [ v 0 = u 0 ]: u 0 7! v 0 and[ v 1 = u 1 ]: u 1 7! v 1 andthematrixformofthemap f changesaccordinglyto [ v 0 = u 0 ] )]TJ/F47 7.9701 Tf 6.587 0 Td [(1 A [ v 1 = u 1 ]. Noticethatthetorsionofthemap f alsoreectsthischangeofbases, f; u 0 ; u 1 := det [ v 0 = u 0 ] )]TJ/F47 7.9701 Tf 6.587 0 Td [(1 A [ v 1 = u 1 ] )]TJ/F47 7.9701 Tf 6.586 0 Td [(1 =1 =det [ v 0 = u 0 ] )]TJ/F47 7.9701 Tf 6.586 0 Td [(1 det A det [ v 1 = u 1 ] Moregenerally,anisomorphismlike f : U 0 )167(! U 1 canbethoughtofasanexact sequence, 0 U 0 U 1 0 f Inthiscase,thetorsionissimplytheinverseofthedeterminantofthemap f oncea choiceofbaseshasbeenmade.Ingeneral,wewouldliketohaveasimilarinvariant 17

PAGE 22

2.TORSIONOFANACYCLICCOMPLEX18 thatcanbeappliedtolongerexactsequence.Inthissense,torsioncanbethought ofasageneralizeddeterminant. 2.Torsionofanacycliccomplex Here,wewilldevelopthetheoryintermsofchaincomplexesoffreeabeliangroups. However,itisimportanttorealizethatthetheorywillbethesameifwelook,more generally,atfreeR-moduleswhenRisacommutativering.Moreprecisely,inorder todenetorsionofanacyclicchaincomplex,wemustbeabletowritedownmatrices thatcorrespondtotheboundarymapsofourchaincomplexes.Thus,aslongaswe havenitebases,thisshouldbepossible. Considerachaincomplexofabeliangroupsandhomomorphisms, C : ::: C n C n )]TJ/F28 7.9701 Tf 6.586 0 Td [(1 ::: @ n +1 @ n @ n )]TJ/F28 7.9701 Tf 6.586 0 Td [(1 Suchachaincomplexiscalled acyclic if H n C =0foralln. Theconditionofacyclicityisequivalenttorequiringthat ker @ n = im @ n +1 forall n ,orthatthesequenceofhomomorphismsgivenaboveisexact. Suppose C isaniteacycliccomplexoffreeabeliangroups f C k g p k =0 .Thengiven any C k ,thereexistsanitebasis, c k = c k 1 ;c k 2 ;:::;c k n sothatelementsof C k can bewrittenasniteformalsums, n X j =1 j c k j j 2 Z Since C isanitecomplex,wecandenefreeabeliangroups f B k g p k =0 asfollows.Let B p =and B k = im @ k +1 for0 k


PAGE 23

2.TORSIONOFANACYCLICCOMPLEX19 0 B k C k B k )]TJ/F28 7.9701 Tf 6.586 0 Td [(1 0 i @ k Let b k = b k 1 ;b k 2 ;:::;b k m beabasisforeach B k .Since @ k isonto B k )]TJ/F28 7.9701 Tf 6.587 0 Td [(1 ,wecan lifteach b k )]TJ/F28 7.9701 Tf 6.586 0 Td [(1 j toa ~ b k )]TJ/F28 7.9701 Tf 6.586 0 Td [(1 j 2 C k .Thus, b k b k )]TJ/F47 7.9701 Tf 6.587 0 Td [(1 = b k 1 ;b k 2 ;:::;b k m ; ~ b k )]TJ/F28 7.9701 Tf 6.586 0 Td [(1 1 ; ~ b k )]TJ/F28 7.9701 Tf 6.587 0 Td [(1 2 ;:::; ~ b k )]TJ/F28 7.9701 Tf 6.586 0 Td [(1 l formsabasisfor B k B k )]TJ/F28 7.9701 Tf 6.586 0 Td [(1 .Itisnottoodiculttoseethat C k isisomorphictothis directsum,butrstweneedanimportantlemmaandatheorem. Considerashortexactsequenceofabeliangroups, 0 A B C 0 f g Suchasequenceiscalled splitexact if f A isadirectsummandof B Lemma 2.1 Thefollowingareequivalent: Theshortexactsequenceaboveissplitexact. Thereexistsamap ~ f : B A suchthat ~ f f = id A : Thereexistsamap ~ g : C B suchthat g ~ g = id C : Proof. Supposethatthesequenceissplitexact.Then, B = f A C 0 and g B = g f A g C 0 = 0 g C 0 = g C 0 .Sincethesequenceisexactwealso havethat g isontoandthus, g B = C .Thus, g C 0 = C so g mustalsobe1-1on C 0 .Thus,thereexistsamap~ g : C C 0 suchthat g ~ g = id C Similarlyifthesequenceissplitexact,wecandene ~ f : B = f A C 0 A by ~ f f a ;c = a .Then ~ f f = id A Nowsupposethatthereexistsamap ~ f : B A suchthat ~ f f = id A : Noticethat since im f = ker g C B im f = f A isanormalsubgroupof B .Let C 0 = ker ~ f Then C 0 C B and f A C 0 = f b 2 B : b 2 f A and b 2 C 0 g .Butif b 2 f A thenthereexists a 2 A suchthat b = f A .Thus, ~ f f a = ~ f b = a .Thus, b is alsointhekernalof ~ f onlyif b =1.So, f A C 0 = f 1 g .Thus,weconcludethat B = f A C 0 .

PAGE 24

2.TORSIONOFANACYCLICCOMPLEX20 Finally,suppose g g = id C .Then g C B .Considertheintersection ker g ~ g C .If b 2 ~ g C ,then b isalsoanelementof ker g onlywhen b =1.Nowwecan constructamap ~ f : B A suchthat ~ f b = 8 < : a whenthereexists a suchthat b = f a ; 1 b 2 ~ g C : Noticethatthe ker ~ f =~ g C ,thus, B = ker g ~ g C = f A ~ g C Thefollowingtheoremcomesfrom[ 2 ]. Theorem 2.2 If C isfreeabelianwithniterank n and B isanonzerosubgroup of C ,thenthereexistsabasis f c 1 ;:::;c n g of C ,aninteger r 1 r n ,and positiveintegers d 1 ;:::d r suchthat d 1 j d 2 j ::: j d r and B isafreeabeliangroupwith basis f d 1 c 1 ;:::;d r c r g Proposition 2.3 If C isaniteacyclicchaincomplexoffreeabeliangroups, f C k g p k =0 ,thenforeach k C k = B k B k )]TJ/F28 7.9701 Tf 6.587 0 Td [(1 ,where B p = and B k = im @ k +1 for 0 k


PAGE 25

2.TORSIONOFANACYCLICCOMPLEX21 f c k j = c k j for j n k f c k j =0for j>n k Then, f i x = x .SotheclaimholdsbyLemma2.1. Foranacyclicchaincomplexoffreeabeliangroups,thereexistsachaincontraction,adegreeonehomomorphism, : C k )]TJ/F28 7.9701 Tf 6.587 0 Td [(1 C k ,suchthat @ + @ =1: C k C k foreachk.Themap iscalledachainhomotopy.Wecanconstructsuchamap asdonein[ 5 ]asfollows: Consideragainthesplitexactsequence, 0 B k C k B k )]TJ/F28 7.9701 Tf 6.586 0 Td [(1 0 i @ k Since C k = B k B k )]TJ/F28 7.9701 Tf 6.587 0 Td [(1 ,thereexists,byLemma2.1,amap g k : B k )]TJ/F28 7.9701 Tf 6.586 0 Td [(1 C k such that @ k g k = id andwecanwrite, C k = i B k g k B k )]TJ/F28 7.9701 Tf 6.586 0 Td [(1 Dene k : C k )]TJ/F28 7.9701 Tf 6.586 0 Td [(1 C k by k a + b = g k a where a 2 i B k and b 2 g k B k )]TJ/F28 7.9701 Tf 6.587 0 Td [(1 Let b 0 2 B k )]TJ/F28 7.9701 Tf 6.586 0 Td [(1 suchthat g k b 0 = b .Then k @ k + @ k +1 k +1 a + b = k @ k b + @ k +1 g k +1 a = k b 0 + id a = b + a = a + b Noticethatthechaincontraction doesnotnecessarilysatisfythecondition, 2 =0,soitisnotnecessarilyachainmap.However,foranychaincontraction, : C k )]TJ/F28 7.9701 Tf 6.587 0 Td [(1 C k ,dene = @ .Thenitiseasytocheckthat isachainmap satisfying @ + @ =1and 2 =0. Suppose satises @ + @ =1.Thenwecanconsidertheoperator, @ + : C C When 2 =0,thismapmustbeanisomorphism,since @ + 2 = @ + @ =1,but ingeneral,weneednotrequirethat beachainmap.Withrespecttothedirect sumdecomposition, C = C even C odd where C even = C 0 C 2 C 4 ::: and C odd = C 1 C 3 C 5 ::: ,wecanthinkof @ + asblockmatrixoftheform,

PAGE 26

2.TORSIONOFANACYCLICCOMPLEX22 @ + = 2 4 0 @ + odd @ + even 0 3 5 Wherewedenoteby, @ + odd themap, @ + j C odd : C odd C even and @ + even themap, @ + j C even : C even C odd Definition 2.4 Foranychaincontraction, satisfying, @ + @ =1,denethe ReidemeisterTorsion ofanacycliccomplex C withrespecttothebasesc,tobe C;c := det @ + odd = det @ + even )]TJ/F28 7.9701 Tf 6.586 0 Td [(1 Ifthechaincomplex C isnotacyclic,wedenethetorsiontobezero. Nowwewillshowsomeimportantresultsconcerningthematrices @ + .In particular,wewillprovethat @ + odd and @ + even arenonsingular,andshow how det @ + odd isrelatedtothechoiceofbasisandthechoiceof .Butrst,we provealemmathatwillmakethecomputationseasier. Lemma 2.5 Suppose M = 2 6 6 6 6 6 6 6 6 6 6 4 m 1 X 12 ::::::X 1 n 0 m 2 X 23 :::X 2 n 0 . . . 0 . . X n )]TJ/F28 7.9701 Tf 6.587 0 Td [(1 n 0 :::::: 0 m n 3 7 7 7 7 7 7 7 7 7 7 5 isa pxp blockmatrixsuchthatthediagonalblocks, m 1 ;:::;m n areallsquareand nonsingular.Then det M = n Y i =1 det m i Proof. Firstconsidera kxk matrix A .Noticewecandirectlycompute, det 0 @ 2 4 A 0 01 3 5 1 A = )]TJ/F24 11.9552 Tf 9.298 0 Td [(1 k +1+ k +1 det A = det A : Inductively,wecaneasilyseethat

PAGE 27

2.TORSIONOFANACYCLICCOMPLEX23 det 0 @ 2 4 A 0 0 I t 3 5 1 A = det A forany t 2 N ,where I t isthe txt identitymatrix.Similarly, det 0 @ 2 4 I t 0 0 A 3 5 1 A = det A : Nowconsidertheblockmatrix M 1 = 2 4 m 1 X 12 0 m 2 3 5 where m 1 and m 2 arenonsingular. Consequently, M 1 isalsononsingular,since 2 4 m 1 X 12 0 m 2 3 5 2 4 m )]TJ/F28 7.9701 Tf 6.587 0 Td [(1 1 m )]TJ/F28 7.9701 Tf 6.586 0 Td [(1 1 X 12 m )]TJ/F28 7.9701 Tf 6.586 0 Td [(1 2 0 m )]TJ/F28 7.9701 Tf 6.586 0 Td [(1 2 3 5 = 2 4 I 0 0 I 3 5 Additionally,wecanfactor M 1 M 1 = 2 4 m 1 X 12 0 m 2 3 5 = 2 4 m 1 0 0 I 3 5 2 4 Im )]TJ/F28 7.9701 Tf 6.586 0 Td [(1 1 Xm )]TJ/F28 7.9701 Tf 6.587 0 Td [(1 2 0 I 3 5 2 4 I 0 0 m 2 3 5 and,wereadilycompute,usingandthat det M 1 = det 0 @ 2 4 m 1 0 0 I 3 5 2 4 Im )]TJ/F28 7.9701 Tf 6.587 0 Td [(1 1 Xm )]TJ/F28 7.9701 Tf 6.586 0 Td [(1 2 0 I 3 5 2 4 I 0 0 m 2 3 5 1 A = det m 1 det m 2 Similarly,ifweconsiderthematrix, M 2 = 2 4 M 1 Y 2 0 m 3 3 5 where Y 2 = 2 4 X 13 X 23 3 5 weseethat det M 2 = det M 1 det m 3 = det m 1 det m 2 det m 3 .Continuingthis process,letting

PAGE 28

2.TORSIONOFANACYCLICCOMPLEX24 Y i = 2 6 6 6 6 6 6 6 4 X 1 i +1 X 2 i +1 X i i +1 3 7 7 7 7 7 7 7 5 ,weeventuallygetthat M = 2 4 M n )]TJ/F28 7.9701 Tf 6.586 0 Td [(2 Y n )]TJ/F28 7.9701 Tf 6.587 0 Td [(2 0 m n 3 5 So, det M = det M n )]TJ/F28 7.9701 Tf 6.587 0 Td [(2 det m n = n Y i =1 det m i Lemma 2.6 Let c beabasisfor C .Then @ + odd and @ + even arenonsingularand det @ + odd = det @ + even )]TJ/F28 7.9701 Tf 6.587 0 Td [(1 Proof. Considerthecomposition, @ + even @ + odd : C odd C odd @ + even @ + odd = @ + 2 j C odd = @ 2 + @ + @ + 2 j C odd =+ 2 j C odd Thus, @ + even @ + odd = 0 B B B B B B B @ C 1 C 3 C 5 ::::::::: C 1 I 3 2 000 ::: C 3 0 I 5 4 00 ::: C 5 00 I 7 6 0 ::: .000 . ::: 1 C C C C C C C A So,bylemma2.5,wegetthat det @ + even @ + odd =1.Noticewhenwe switchfromthinkingaboutfunctioncompositiontothinkingaboutmatrixmultiplication,weget @ + even @ + odd = @ + odd @ + even .Thus, @ + odd and @ + even arenonsingular,and det @ + odd = det @ + even )]TJ/F28 7.9701 Tf 6.586 0 Td [(1 Lemma 2.7 Let c = [ c i and c 0 = [ c 0 i bebasesofC,suchthat c i and c 0 i are arbitrarybasesof C i .Then C;c 0 = C;c n Y i =0 det [ c 0 i =c i ] )]TJ/F28 7.9701 Tf 6.586 0 Td [(1 i .

PAGE 29

2.TORSIONOFANACYCLICCOMPLEX25 where [ c 0 i =c i ] isthechangeofbasismatrixtaking c i to c 0 i Proof. Considerthat @ + odd isamapfrom C odd C even .Thus,thereexist changeofbasismatrices, [ c 0 odd =c odd ]: [ iodd c i [ iodd c 0 i and [ c 0 even =c even ]: [ ieven c i [ ieven c 0 i Sothat C;c 0 = det [ c 0 odd =c odd ] )]TJ/F28 7.9701 Tf 6.586 0 Td [(1 @ + odd [ c 0 even =c even ] = det [ c 0 odd =c odd ] )]TJ/F28 7.9701 Tf 6.586 0 Td [(1 det @ + odd det [ c 0 even =c even ] = C;c det [ c 0 odd =c odd ] )]TJ/F28 7.9701 Tf 6.586 0 Td [(1 det [ c 0 even =c even ] : But, det [ c 0 odd =c odd ] )]TJ/F28 7.9701 Tf 6.587 0 Td [(1 det [ c 0 even =c even ]= n Y i =0 det [ c 0 i =c i ] )]TJ/F28 7.9701 Tf 6.587 0 Td [(1 i Thus,theresultholds. Noticethatif c i = c i 1 ;c i 2 ;:::c i n and c 0 i = c i 2 ;c i 1 ;c i 3 ;:::c i n ,then det [ c 0 i = c i ]= )]TJ/F24 11.9552 Tf 9.299 0 Td [(1 foreach i ,thus, C;c 0 = C;c Lemma 2.8 SupposeforanacyclicchaincomplexC,thereexistchaincontractions, and .Then det @ + = det @ + det @ + @ Proof. Consider,

PAGE 30

2.TORSIONOFANACYCLICCOMPLEX26 det @ + odd det @ + odd = det @ + odd det @ + even = det @ 2 + @ + @ + j C odd = det @ + @ + j C odd Noticethat, @ : C i C i @ : C i C i : C i C i +2 Thus,wehaveablockmatrixoftheform, @ + @ + j C odd = 0 B B B B B B B @ C 1 C 3 C 5 ::::::::: C 1 [ @ + @ ][ ]000 ::: C 3 0[ @ + @ ][ ]00 ::: C 5 00[ @ + @ ][ ]0 ::: .000 . ::: 1 C C C C C C C A So,usinglemma2.5,wegetthat det @ + @ + j C odd = Y iodd det @ + @ j C 2 i +1 = det @ + @ j C odd providedwecanshow @ + @ j C 2 i +1 isnon-singularforeach i 0. Butthisisnothardifweconvenientlyguessthat @ + @ j C 2 i +1 willbetheinverse andcompute,

PAGE 31

2.TORSIONOFANACYCLICCOMPLEX27 @ + @ j C 2 i +1 @ + @ j C 2 i +1 = @ @ + @@ + @ @ + @ @ = )]TJ/F24 11.9552 Tf 12.623 0 Td [( @ @ +0+ @ )]TJ/F30 11.9552 Tf 11.955 0 Td [(@ + )]TJ/F24 11.9552 Tf 12.623 0 Td [( @ )]TJ/F30 11.9552 Tf 11.955 0 Td [(@ = @ )]TJ/F24 11.9552 Tf 12.623 0 Td [( @@ + @ + @@ +1 )]TJ/F24 11.9552 Tf 12.623 0 Td [( @ )]TJ/F30 11.9552 Tf 11.955 0 Td [(@ + @@ = @ + @ +1 )]TJ/F24 11.9552 Tf 12.623 0 Td [( @ )]TJ/F30 11.9552 Tf 11.955 0 Td [(@ =1+1 )]TJ/F24 11.9552 Tf 11.955 0 Td [(1=1 j C 2 i +1 Thus, @ + @ j C 2 i +1 isinvertible,and det @ + odd = det @ + odd det @ + @ j C odd Nowthatwehaveshownhowthetorsionisdependentonourchoiceofbasisand choiceofthemap ,wegiveanexampleofhowtocomputeit. Example 2.9 Supposethereexistsanacyclicchaincomplex, C :0 R R 2 R 2 R 0 @ 3 @ 2 @ 1 with, @ 1 = h 22 i @ 2 = 2 4 3 )]TJ/F24 11.9552 Tf 9.298 0 Td [(2 )]TJ/F24 11.9552 Tf 9.298 0 Td [(32 3 5 @ 3 = 2 4 2 3 3 5 Constructingmaps, i sothat @ + @ =1,take 1 = 2 4 1 2 0 3 5 2 = 2 4 0 )]TJ/F28 7.9701 Tf 10.494 4.707 Td [(1 3 00 3 5 3 = h 0 1 3 i Then,themap @ 3 3 + 2 @ 2 : R R isgivenby,

PAGE 32

2.TORSIONOFANACYCLICCOMPLEX28 2 4 2 3 3 5 h 0 1 3 i + 2 4 0 )]TJ/F28 7.9701 Tf 10.494 4.707 Td [(1 3 00 3 5 2 4 3 )]TJ/F24 11.9552 Tf 9.299 0 Td [(2 )]TJ/F24 11.9552 Tf 9.299 0 Td [(32 3 5 = 2 4 10 01 3 5 andtheothersaresimilar. Usingthedenition,wecomputethat @ + odd : R 2 R R R 2 = 2 6 6 6 4 220 0 )]TJ/F28 7.9701 Tf 10.494 4.707 Td [(1 3 2 003 3 7 7 7 5 @ + even : R R 2 R 2 R = 2 6 6 6 4 1 2 3 )]TJ/F24 11.9552 Tf 9.298 0 Td [(2 0 )]TJ/F24 11.9552 Tf 9.298 0 Td [(32 00 1 3 3 7 7 7 5 Alternatively,consider 1 = 2 4 1 2 0 3 5 2 = 2 4 00 0 1 2 3 5 3 = h 1 2 0 i Computationwillshowthat alsosatises, @ + @ =1 And @ + odd = 2 6 6 6 4 220 002 0 1 2 3 3 7 7 7 5 @ + even = 2 6 6 6 4 1 2 3 )]TJ/F24 11.9552 Tf 9.298 0 Td [(2 0 )]TJ/F24 11.9552 Tf 9.298 0 Td [(32 0 1 2 0 3 7 7 7 5 Noticethat det @ + odd = det @ + odd = det @ + even )]TJ/F28 7.9701 Tf 6.586 0 Td [(1 = det @ + even )]TJ/F28 7.9701 Tf 6.586 0 Td [(1 = )]TJ/F24 11.9552 Tf 9.298 0 Td [(2.

PAGE 33

2.TORSIONOFANACYCLICCOMPLEX29 Ingeneral,ndingamap canbecomputationallycumbersomeanditturnsout tobeunnecessaryaswell. Recallthatwecanthinkof C k = B k +1 B k where B k +1 = @ C k +1 B 0 = @ C 0 = 0.Thenforthebasis b k + 1 b k of C ,weconsiderthechaincomplex, 0 0 B n 0 B n )]TJ/F28 7.9701 Tf 6.586 0 Td [(1 0 B n )]TJ/F28 7.9701 Tf 6.587 0 Td [(2 0 B 2 0 B 1 0 L L L L L L B n B n )]TJ/F28 7.9701 Tf 6.586 0 Td [(1 B n )]TJ/F28 7.9701 Tf 6.587 0 Td [(2 B n )]TJ/F28 7.9701 Tf 6.587 0 Td [(3 B 1 0 @ @ @ @ Then,ascomputedin[ 1 ]16.1,themaps @ and actliketheidentityoneach B k Thus, det @ + =1= C; b k + 1 b k =1. So,foranyotherbases c 0 of C C; c 0 = C; b k + 1 b k n Y k =0 [ b k + 1 b k = c 0 k ] )]TJ/F28 7.9701 Tf 6.586 0 Td [(1 k +1 = n Y k =0 [ b k + 1 b k = c 0 k ] )]TJ/F28 7.9701 Tf 6.586 0 Td [(1 k +1 Thisgivesusanalternativewaytocomputethetorsionwithouthavingtondamap Lemma 2.10 C;c doesnotdependonthechoiceof b i Proof. For i = )]TJ/F24 11.9552 Tf 9.299 0 Td [(1and i = m thereisnothingtoshow.Let i 2f 0 ;::::;m )]TJ/F24 11.9552 Tf 12.075 0 Td [(1 g Weshowthat [ b i b i )]TJ/F28 7.9701 Tf 6.586 0 Td [(1 =c i ] )]TJ/F28 7.9701 Tf 6.586 0 Td [(1 i +1 [ b i +1 b i =c i +1 ] )]TJ/F28 7.9701 Tf 6.587 0 Td [(1 i +2 isindependentofthechoiceof b i .Suppose b 0 i isanotherbasisof B i ,then

PAGE 34

2.TORSIONOFANACYCLICCOMPLEX30 [ b 0 i b i )]TJ/F28 7.9701 Tf 6.587 0 Td [(1 =c i ]=[ b 0 i b i )]TJ/F28 7.9701 Tf 6.586 0 Td [(1 =b i b i )]TJ/F28 7.9701 Tf 6.587 0 Td [(1 ] [ b i b i )]TJ/F28 7.9701 Tf 6.587 0 Td [(1 =c i ] =[ b 0 i =b i ] [ b i b i )]TJ/F28 7.9701 Tf 6.586 0 Td [(1 =c i ] : Similarly, [ b i +1 b 0 i =c i +1 ]=[ b 0 i =b i ] [ b i +1 b i =c i +1 ]. Thus [ b 0 i b i )]TJ/F28 7.9701 Tf 6.587 0 Td [(1 =c i ] )]TJ/F28 7.9701 Tf 6.587 0 Td [(1 i +1 [ b i +1 b 0 i =c i +1 ] )]TJ/F28 7.9701 Tf 6.587 0 Td [(1 i +2 =[ b 0 i =b i ] [ b i b i )]TJ/F28 7.9701 Tf 6.587 0 Td [(1 =c i ] )]TJ/F28 7.9701 Tf 6.587 0 Td [(1 i +1 [ b 0 i =b i ] [ b i +1 b i =c i +1 ] )]TJ/F28 7.9701 Tf 6.586 0 Td [(1 i +2 =[ b i b i )]TJ/F28 7.9701 Tf 6.586 0 Td [(1 =c i ] )]TJ/F28 7.9701 Tf 6.587 0 Td [(1 i +1 [ b i +1 b i =c i +1 ] )]TJ/F28 7.9701 Tf 6.587 0 Td [(1 i +2

PAGE 35

CHAPTER5 TorsionofaniteCWcomplex WehavedenedReidemeistertorsionintermsofanacyclicchaincomplex,thereforeifwearetohaveanyhopeofcomputingthetorsionofaniteCWcomplex, X ,wemustndawaytoassociateanacyclicchaincomplexwithit.Recall,that wehavealreadyassociatedachaincomplex,CwiththespaceX,madeofthefree abeliangroups C k X .However,thischaincomplexisnot,ingeneral,acyclic.Thus, wemustndawaytomakethischaincomplexacyclic. Let p : ~ X X betheuniversalcoverofX.Fix x 2 X andset = 1 X;x Notethat actson ~ X whichinducesanactiononthechaingroups C k ~ X .Extend thisactionlinearlytoanactionof Z [ ].Thus, C k ~ X becomesa Z [ ]-module. Choosingak-cell ~ E k j over E k j ,weformabasisfor C k ~ X ,sothat C k ~ X = M j Z [ ] ~ E k j Thus,thechaingroups C k ~ X formachaincomplexofabeliangroupsunderthe boundaryhomomorphism.However,thischaincomplexmaystillnotbeacyclic. Tondanacyclicchaincomplex,welookforaringhomomorphism, : Z [ ] R where R isaringwithunity.Inparticular,wewilldene bymappingthegenerators of Z [ ]toelementsof R .Thishomomorphismwillinducenewboundarymapsand thus,giveusanewchaincomplex, C ~ X = R C ~ X .Ifthisnewchaincomplexis acyclic,thenwecancomputeitstorsion,whichwedeneastheReidemeistertorsion oftheCWcomplexX. Definition 0.11 TheReidemeistertorsionofaspace X isgivenby, X = C ~ X forsomeringhomomorphism, 31

PAGE 36

5.TORSIONOFAFINITECWCOMPLEX32 Thetorsion, X isuniqueuptoorientationofcells,choiceoflift,andchoiceof map .Thisconstructionallowsustoimposemorestructureonourchaincomplexes withoutlosingtheringstructurethatisalreadythere.Afewexamplesshouldclarify howtoensurethat R C ~ X isacyclic.Inthefollowingexampleswewillalways chooseourring R tobetheeldofcomplexnumbers C Example 0.12TorsionofaCircle Let X = S 1 = a 0 [ a 1 where a 0 isapoint and a 1 isa1-cell.Recallthattheuniversalcoveringspaceofacircleis ~ X = R and thegroup 1 S 1 = Z .Wehavetheassociatedchaincomplex, C ~ X =0 Z [ ] Z [ ] 0 @ Denebasesforeach Z [ ]by, ~ a 0 =0and~ a 1 =[0 ; 1]. Recallthat 1 S 1 actson R byrighttranslations.Ifwelet t bethegeneratorfor Z then, t n x = x + n forany x 2 R .Thus, @ ~ a 1 = < 1 > )]TJ/F30 11.9552 Tf 12.619 0 Td [(< 0 > = t ~ a 0 )]TJ/F24 11.9552 Tf 12.101 0 Td [(~ a 0 = t )]TJ/F24 11.9552 Tf 11.955 0 Td [(1~ a 0 Althoughwehavecomputedtheboundarymap,wecannotyetcomputethetorsion sincethechaincomplex, C ~ X isnotacyclic.Noticethat, H 0 C ~ X = H 0 C R = H 0 R = Z : Inparticular,themap @ isnotonto. Suppose t = @ x .Then, t = @ x = x t )]TJ/F24 11.9552 Tf 12.094 0 Td [(1whichwouldimply x = t t )]TJ/F24 11.9552 Tf 12.093 0 Td [(1 )]TJ/F28 7.9701 Tf 6.586 0 Td [(1 Butthisisimpossiblesince t )]TJ/F24 11.9552 Tf 11.955 0 Td [(1doesnothaveamultiplicativeinversein Z [ ]. Thus,wemustndaring R suchthatthehomomorphism, : Z [ ]: R takes t )]TJ/F24 11.9552 Tf 9.403 0 Td [(1 into R .Forsimplicity,wechoose C ,butwecouldchooseanyeldofcharacteristic zero.Since C isaeld,everynonzeroelementwillhaveaninverse.

PAGE 37

5.TORSIONOFAFINITECWCOMPLEX33 Dene by t = p forsome p 6 =1or0.Then inducesaboundarymapfor thenewchaincomplex, R C 0 ~ X @ ~ a 1 = p )]TJ/F24 11.9552 Tf 11.955 0 Td [(1~ a 0 Now,chooseabasis c 1 = f ~ a 1 g ;c 0 = f ~ a 0 g anddene b 0 = ;b 1 = f ~ a 1 g Then [ @b 1 b 0 n c 0 ]= p )]TJ/F24 11.9552 Tf 11.955 0 Td [(1and[ b 1 n c 1 ]=1 So, S 1 = p )]TJ/F24 11.9552 Tf 11.956 0 Td [(1 )]TJ/F28 7.9701 Tf 6.586 0 Td [(1 Accountingforchoiceoforientation,choiceofliftandchoiceofthemap ,wehave that S 1 = p n p )]TJ/F24 11.9552 Tf 11.956 0 Td [(1 )]TJ/F28 7.9701 Tf 6.586 0 Td [(1 forany n 2 Z Example 0.13TorsionofaTorus Consider X = T 2 thetorusconsistingof aCWstructurewithone0-cell a ,two1-cells b 1 and b 2 ,andone2-cell c .TheCW complexgivesusanaturalchaincomplex,inwhich C i T 2 = H i X i ;X i )]TJ/F28 7.9701 Tf 6.587 0 Td [(1 ,giving us, 0 Z Z Z Z 0 0 0 Ifweliftthecellstotheuniversalcovingspace, R 2 ,thefundamentalgroup, = 1 T 2 = Z Z ,canactontheliftedcellsgivingusagroupringstructureand C k R 2 = Z [ ]andanewchaincomplex, 0 Z [ ] Z [ ] Z [ ] Z [ ] 0 @ 1 @ 0 Let 1 and 2 bethegeneratorsfor = Z Z andchoosebases, p i suchthat, p 0 = f ~ a = < 0 > 2 R 2 g p 1 = f ~ b 1 = I f 0 g R 2 ; ~ b 2 = f 0 g I R 2 ;I =[0 ; 1] g p 2 = f ~ c = I I R 2 g

PAGE 38

5.TORSIONOFAFINITECWCOMPLEX34 ~ a 1 ~ a 2 ~ a ~ b 1 2 b 1 ~ b 2 1 b 2 2 1 b 2 ~ c 1 2 ~ c Thenlookingatthelatticeofintegers,wecancomputethat, @ ~ a =0 @ 0 ~ b 1 = 1 )]TJ/F24 11.9552 Tf 11.955 0 Td [(1~ a @ 0 ~ b 2 = 2 )]TJ/F24 11.9552 Tf 11.955 0 Td [(1~ a @ 1 ~ c = )]TJ/F30 11.9552 Tf 11.955 0 Td [( 2 ~ b 1 )]TJ/F24 11.9552 Tf 11.956 0 Td [( )]TJ/F30 11.9552 Tf 11.955 0 Td [( 1 ~ b 2 Noticethat im @ 1 = ker @ 0 ,since H 1 C ~ X = H 1 C R 2 = H 1 R 2 =0.But, thesequenceisnotacyclicsince H 0 C ~ X = H 0 R 2 = Z Inordertomakethischaincomplexacyclic,weconsider : Z [ ] C ,where 1 = s and 2 = t for s;t 6 =1or0and s t linearlyindependent.Thiswillgive usinversesfor 1 )]TJ/F24 11.9552 Tf 11.955 0 Td [(1and 2 )]TJ/F24 11.9552 Tf 11.955 0 Td [(1whichwillmakethesequenceacyclic. 0 C C C C 0 @ 1 @ 0 Noticethattheinducedboundarymapslookincrediblysimilartotheoriginal maps, @ 1 ~ c = )]TJ/F30 11.9552 Tf 11.955 0 Td [(t ~ b 1 )]TJ/F24 11.9552 Tf 11.956 0 Td [( )]TJ/F30 11.9552 Tf 11.955 0 Td [(s ~ b 2

PAGE 39

5.TORSIONOFAFINITECWCOMPLEX35 @ 0 ~ b 1 = s )]TJ/F24 11.9552 Tf 11.955 0 Td [(1~ a and @ 0 ~ b 2 = t )]TJ/F24 11.9552 Tf 11.955 0 Td [(1~ a Now,set 2 = f ~ c g 1 = f ~ b 1 g and 0 = f g Then 2 formsabasisfor C @ 2 [ 1 formsabasisfor C C and @ 1 [ 0 formsabasisfor C Ifwecomputethecorrespondingchangeofbasismatrices,weget, [ 2 = p 2 ]=1 [ @ 2 1 = p 1 ]= det 2 4 )]TJ/F30 11.9552 Tf 11.955 0 Td [(t s )]TJ/F24 11.9552 Tf 11.955 0 Td [(1 10 3 5 = )]TJ/F24 11.9552 Tf 9.299 0 Td [( s )]TJ/F24 11.9552 Tf 11.955 0 Td [(1 [ @ 1 0 = p 0 ]= s )]TJ/F24 11.9552 Tf 11.955 0 Td [(1 Thus, T 2 = )]TJ/F24 11.9552 Tf 9.299 0 Td [(1andaccountingforchoiceoflift,orientation,and ,wegetthat T 2 = s k t l forany k;l 2 Z .

PAGE 40

CHAPTER6 ClassicationofLensSpaces 1.R-TorsionofLm,n RecalltheCWdecompositionforlensspacesliftedtotheuniversalcover, S 3 is E 0 j = j ; 0 E 1 j = f e i ; 0 2 S 3 ; 2 j m 2 j +1 m g E 2 j = f z;s j 2 S 3 ; s 2 R ; j z j 2 + s 2 =1 g E 3 j = f z;w 2 S 3 ; 2 j m arg w 2 j +1 m g Andaswecomputedbefore, @ 1 E 1 j = E 0 j +1 )]TJ/F30 11.9552 Tf 11.955 0 Td [(E 0 j @ 2 E 2 j = m )]TJ/F28 7.9701 Tf 6.586 0 Td [(1 X k =0 E 1 k @ 3 E 3 j = E 2 j +1 )]TJ/F30 11.9552 Tf 11.955 0 Td [(E 2 j Recallthatthefundamentalgroupofalensspaceisgivenby 1 L m;n = Z m and itsuniversalcoveris S 3 .However,whilethefundamentalgroupof L m;n doesnot dependon n ,theactionofthefundamentalgroupon S 3 does.Let beagenerator for Z m .Then, actsonorderedpairs z;w ,by z;w = z; n w .Thus, E k j = E k j +1 for k =0 ; 1 and E k j = E k j + n for k =2 ; 3 : 36

PAGE 41

1.R-TORSIONOFLM,N37 So, @ 1 E 1 j = )]TJ/F24 11.9552 Tf 11.955 0 Td [(1 E 0 j @ 2 E 2 j = m )]TJ/F28 7.9701 Tf 6.586 0 Td [(1 X i =0 j E 1 0 @ 3 E 3 j = r )]TJ/F24 11.9552 Tf 11.955 0 Td [(1 E 2 j where rn 1mod m Let : Z [ Z m ]= Z [ ] C denedforanynontrivial mth rootofunity t ,by = t .Thentensoringover givesusanewchaincomplex, C = C S 3 C andtheinducedboundarymapsbecome, @ 1 E 1 j = t )]TJ/F24 11.9552 Tf 11.955 0 Td [(1 E 0 j @ 2 E 2 j = m )]TJ/F28 7.9701 Tf 6.586 0 Td [(1 X j =0 t j E 1 0 = t m )]TJ/F24 11.9552 Tf 11.955 0 Td [(1 t )]TJ/F24 11.9552 Tf 11.955 0 Td [(1 E 1 0 =0 @ 3 E 3 j = t r )]TJ/F24 11.9552 Tf 11.955 0 Td [(1 E 2 j Thenewchaincomplex, 0 C C C C 0 t r )]TJ/F24 11.9552 Tf 11.955 0 Td [(1 0 t )]TJ/F24 11.9552 Tf 11.955 0 Td [(1 isacyclicandthetorsionisgivenby, L m;n = t k t )]TJ/F24 11.9552 Tf 11.955 0 Td [(1 )]TJ/F28 7.9701 Tf 6.586 0 Td [(1 t r )]TJ/F24 11.9552 Tf 11.955 0 Td [(1 )]TJ/F28 7.9701 Tf 6.586 0 Td [(1 where rn 1mod m and k 2 Z Choosingdierent m throotsofunity,wecaneasilyseesomelensspaceswillhave thesametorsion.Firstnotethat L m;n 0 = L m;n 1 whenever n 0 n 1 1 mod m .Usingthecomputationaboveandtaking k =1,wehave L m;n 0 = t )]TJ/F24 11.9552 Tf 11.955 0 Td [(1 )]TJ/F28 7.9701 Tf 6.587 0 Td [(1 t r )]TJ/F24 11.9552 Tf 11.955 0 Td [(1 )]TJ/F28 7.9701 Tf 6.587 0 Td [(1 for rn 0 1mod m ,wehavethat r = n 1 mod m .Thus,wecanndanotherroot ofunity, s ,suchthat s n 0 = t .Then, t n 1 = s n 0 n 1 = s andthus,

PAGE 42

2.HOMOTOPYCLASSIFICATION38 L m;n 0 = t )]TJ/F24 11.9552 Tf 11.955 0 Td [(1 )]TJ/F28 7.9701 Tf 6.587 0 Td [(1 t n 1 )]TJ/F24 11.9552 Tf 11.955 0 Td [(1 )]TJ/F28 7.9701 Tf 6.587 0 Td [(1 = s n 0 )]TJ/F24 11.9552 Tf 11.955 0 Td [(1 )]TJ/F28 7.9701 Tf 6.586 0 Td [(1 s )]TJ/F24 11.9552 Tf 11.955 0 Td [(1 )]TJ/F28 7.9701 Tf 6.587 0 Td [(1 = L m;n 1 Additionally,when n 0 )]TJ/F30 11.9552 Tf 21.918 0 Td [(n 1 mod m L m;n 0 = t )]TJ/F24 11.9552 Tf 11.955 0 Td [(1 )]TJ/F28 7.9701 Tf 6.587 0 Td [(1 t r )]TJ/F24 11.9552 Tf 11.955 0 Td [(1 )]TJ/F28 7.9701 Tf 6.586 0 Td [(1 = t r t )]TJ/F24 11.9552 Tf 11.955 0 Td [(1 )]TJ/F28 7.9701 Tf 6.586 0 Td [(1 )]TJ/F30 11.9552 Tf 11.955 0 Td [(t )]TJ/F31 7.9701 Tf 6.586 0 Td [(r )]TJ/F28 7.9701 Tf 6.587 0 Td [(1 = L m;n 1 Inparticular, L m;n 0 = L m;n 1 when n 0 n )]TJ/F28 7.9701 Tf 6.586 0 Td [(1 1 mod m n 0 )]TJ/F30 11.9552 Tf 21.918 0 Td [(n 1 mod m: 2.HomotopyClassication Wearenowreadytocompletelyclassifylensspacesuptohomotopy.Wewillsee thattorsionisnotahomotopyinvariantandthatinfacttherearehomotopiclens spaceswithdierentReidemeistertorsions.Butrst,wewillstatetwotheoremsby HurewiczandWhiteheadrespectivelythatcomefrom[ 7 ],whichwewillneedforour classicationproofs. Definition 2.1 ForanyspaceX,thereexistsagrouphomomorphism,calleda Hurewiczmap h : k X;A H k X;A .Denedby h = f e where isa generator k X;A e isageneratorfor H k D n ;S n )]TJ/F28 7.9701 Tf 6.586 0 Td [(1 and f : D n ;S n )]TJ/F28 7.9701 Tf 6.587 0 Td [(1 X;A Theorem 2.2Hurewicz TheHurewiczmap h : n S n H n S n isanisomorphismfor n 1 Theorem 2.3Whitehead Let f : X Y beacontinuousmapwhere X and Y arepathconnectedCWcomplexes.Then, f inducesamaponhomotopygroups, f : k X k Y Iftheinducedmapsareallisomorphisms,then X and Y arehomotopic. Recallthatlensspaceswithdierentfundamentalgroupscannotbehomotopic, sincethefundamentalgroupisahomotopyinvariant.Thus,wecanrestricttodistinguishing L m;n 0 from L m;n 1 .

PAGE 43

2.HOMOTOPYCLASSIFICATION39 Definition 2.4 Consideramap f : S n S n for n 1.Thismapinducesa maponthehomologyof S n .Inparticular,if H n S n = <> ,thentheinducedmap f : H n S n H n S n isahomomorphismfrom Z toitself.Thus, f isdenedby f = m forsomeinteger m whichwecallthe degree ofthemap f Example 2.5 Consideramapontheunitcircle f : S 1 S 1 ofdegree2. 2 f S 1 S 1 e i 7! e i 2 2 Wecreateamapofanydegreeifwechangethedegreeof f onasmallsegment ofthecircle. Let0 ,beaxedangle,choose n 2 Z ,andconsideramap :[0 ; ] [0 ; 2 n +2 ] t = 2 n +2 t Then e it 7! e i t willwrapthesegment[0 ; ]aroundthecircle n times,andend atthepoint2 Ifwechangethedegreeof f onthissegment,wewillhaveamapthattakes t 2 [0 ; ]tothewholecircle n +2 times,and[ ; 2 ]tothecircle2 )]TJ/F24 11.9552 Tf 11.955 0 Td [(2 times. Themap ^ f doesjustthat, ^ f : e it 7! 8 < : e i 2 t t= 2 [0 ; ]; e i t t 2 [0 ; ]; Nowwecanseethat ^ f willhavedegree n for t 2 [0 ; 2 n 2 n +2 ]anddegree2for t 2 [ 2 n 2 n +2 ; 2 ].Thus, ^ f hasdegree2+ n ,andbychanging n wecanadjustthedegree tobeanyinteger. Nowsupposeourmap f inducesamap g onquotientspacessothatthediagram commutes.

PAGE 44

2.HOMOTOPYCLASSIFICATION40 2 f S 1 = Z 2 p 1 p 2 S 1 = Z 3 2 3 3 g Ifwewanttochangethedegreeof f sothatitwillstillrespectthequotientmaps, wemustdoitinawaythatwillrespectthe Z 2 actionon S 1 .Thismeansthatwe mustnd ^ f sothatitinducesamap^ g satisfying p 2 ^ f =^ g p 1 foranypointon S 1 But,lookingatthequotientmapwenoticethat p 1 [0 ; ]= p 1 [ ; + ].Sowe shouldrequirethat, p 2 ^ f [0 ; ]= p 2 ^ f [ ; + ]=^ g p 1 [0 ; ]=^ g p 1 [ ; + ]. Ifwechangethedegreeof f onlyon[0 ; ],aswedidbefore,then ^ f [0 ; ] 6 = ^ f [ ; + ] andthus,wewillmostlikelyhave p 2 ^ f [0 ; ] 6 = p 2 ^ f [ ; + ]. Wecanensurethat p 2 ^ f [0 ; ]= p 2 ^ f [ ; + ] bychoosing ^ f suchthat ^ f [0 ; ]= ^ f [ ; + ]. Thus,weconstruct 1 t = 2 n +2 t asbeforeand 2 :[ ; + ] [0 ; 2 n +2 ] sothat

PAGE 45

2.HOMOTOPYCLASSIFICATION41 2 t = 2 n +2 t )]TJ/F28 7.9701 Tf 13.151 4.707 Td [(2 2 n )]TJ/F24 11.9552 Tf 11.955 0 Td [(2 Thenwedene ^ f tobe ^ f : e it 7! 8 > > > > > > > < > > > > > > > : e i 1 t t 2 [0 ; ]; e i 2 t t 2 [ ; ]; e i 2 t t 2 [ ; + ] e i 2 t t 2 [ + ; 2 ] Now ^ f willhavedegree2 n +2,whichmeanswecanonlyalterthedegreeof ^ f bya multipleof2ifwewant ^ f torespectthecommutativityofthediagram. Thisconstructionworkssimilarlyifweconsiderdegreemapsonany n -sphere.In particularifwewantourconstructiontorespectaquotientmap, S n S n = Z k ,we canonlychangethedegreemodulo k Nowwearereadytoclassifylensuptohomotopy.Thefollowingproofcomes from[ 4 ]. Theorem 2.6HomotopyClassication L m;n 0 ishomotopyequivalentto L m;n 1 ifandonlyif n 0 r 2 n 1 mod m forsome r 2 Z m Proof. Suppose n 0 r 2 n 1 mod m forsome r 2 Z m Noticethatif Z m = <> thereisanaturalactionof onpairs z;w 2 S 3 ,given by, r;s z;w = r z; s w when r;m = s;m =1. Now,consideramap f k 1 ;k 2 : S 3 S 3 suchthat f k 1 ;k 2 z;w = f k 1 ;k 2 re i ;se i = re ik 1 ;se ik 2 then,if Z m = <> ,themap f k 1 ;k 2 commuteswiththenaturalactionof on z;w sothat, f k 1 ;k 2 1 ;n z;w = k 1 re ik 1 ; nk 2 se ik 2 = k 1 ;nk 2 f k 1 ;k 2 z;w .

PAGE 46

2.HOMOTOPYCLASSIFICATION42 Thus f k 1 ;k 2 hasdegree k 1 k 2 andinducesamaponthequotientspaces, [ f k 1 ;k 2 ]: L m;n 0 L m;n 1 Fixasmallball B 0 on S 3 anddeneballs B r = r;rn 0 B 0 for1 r m )]TJ/F24 11.9552 Tf 11.956 0 Td [(1so that B 0 B r =foreach r .Thenwecanmodifythedegreeof f k 1 ;k 2 on m )]TJ/F28 7.9701 Tf 6.586 0 Td [(1 [ r =0 B r tobeanymultipleof m .Thiswillmakethedegreeof f k 1 ;k 2 onthewholeof S 3 any multipleof m and,asinexample2.5, f k 1 ;k 2 willstillinduceamaponthequotient spaces,[ f k 1 ;k 2 ]: L m;n 0 L m;n 1 Inparticular,ifwedene l suchthat ln 0 1mod m ,then n 0 r 2 n 1 mod m impliesthat 1 n 0 l r 2 n 1 l mod m Thus,wecanmodifythemap, f r;rn 1 l : S 3 S 3 sothatithasdegree1. Since f r;rn 1 l hasdegree1itishomotopictotheidentitymap,sobyHurewiczit inducesanisomorphism, f r;rn 1 l : k S 3 k S 3 for k 1. Since k L m;n i = k S 3 for k 2and i =0 ; 1,wehavethat f r;rn 1 l induces isomorphisms k L m;n 0 k L m;n 1 for k 2. Finally,wecanalsoseethat f r;rn 1 l inducesanisomorphismonthefundamental groupsof L m;n 0 and L m;n 1 byconsideringwhathappenstothepoints, z; 0. Noticethat f r;rn 1 l z; 0= r z; 0.Since r;m =1, r generatesthegroup Z m .Thus if[ k ] 2 1 L m;n 0 ,then[ f r;rn 1 l k ]= kr ,givingthedesiredisomorphism.

PAGE 47

3.HOMEOMORPHISMCLASSIFICATION43 Sincewehaveshownthat f r;rn 1 l inducesisomorphisms k L m;n 0 k L m;n 1 forall k ,byWhitehead'stheorem,wecanconcludethat L m;n 0 ishomotopicto L m;n 1 Example 2.7 Inordertoclassifyhomotopytypesof L ;n ,weconsiderthe casesforwhich0
PAGE 48

3.HOMEOMORPHISMCLASSIFICATION44 Inordertoclassifylensspacesuptohomeomorphism,wewillrstndthelens spaceswiththesametorsion,andthenshowthatthoselensspacesare,infact, homeomorphic. Theorem 3.3HomeomorphismClassication L m;n 0 ishomeomorphicto L m;n 1 ifandonlyif n 0 n 1 1 mod m Proof. Firstwewillshowif L m;n 0 homeomorphicto L m;n 1 ,then n 0 n 1 1 mod m .Suppose and aregeneratorsfor Z m suchthat 1 = t and 2 = s .Since L m;n 0 ishomeomorphicto L m;n 1 ,thereexistsamap, h ,such thatthefollowingdiagramcommutes. L m;n 1 L m;n 0 C h 1 2 Since and areprimitiverootsofunity,thereexists suchthat m; =1and h = .Thus, t = 1 = 2 h = 2 = s Now,sincetorsionisahomeomorphisminvariant,weknowthat L m;n 0 = L m;n 1 .So, L m;n 0 = t t )]TJ/F24 11.9552 Tf 11.955 0 Td [(1 t n 0 )]TJ/F24 11.9552 Tf 11.955 0 Td [(1= s s )]TJ/F24 11.9552 Tf 11.955 0 Td [(1 s n 1 )]TJ/F24 11.9552 Tf 11.955 0 Td [(1= L m;n 1 forsomeintegers and in Z Substituting t = s ,weget, s s )]TJ/F24 11.9552 Tf 11.955 0 Td [(1 s n 0 )]TJ/F24 11.9552 Tf 11.955 0 Td [(1= s s )]TJ/F24 11.9552 Tf 11.955 0 Td [(1 s n 1 )]TJ/F24 11.9552 Tf 11.956 0 Td [(1. Multiplyingthisoutandletting 2f)]TJ/F24 11.9552 Tf 26.567 0 Td [(1 ; 1 g a = )]TJ/F30 11.9552 Tf 11.955 0 Td [( wehave, 1 )]TJ/F30 11.9552 Tf 11.955 0 Td [(s )]TJ/F30 11.9552 Tf 11.955 0 Td [(s n 0 + s n 0 +1 + s a )]TJ/F30 11.9552 Tf 11.955 0 Td [(s + a )]TJ/F30 11.9552 Tf 11.955 0 Td [(s n 1 + a + s n 1 +1+ a =0.

PAGE 49

3.HOMEOMORPHISMCLASSIFICATION45 Noticethatthisequationholdsforany m throotofunity s .Thus,consideringthe polynomial, p x =1 )]TJ/F30 11.9552 Tf 11.955 0 Td [(x )]TJ/F30 11.9552 Tf 11.955 0 Td [(x n 0 + x n 0 +1 + x a )]TJ/F30 11.9552 Tf 11.956 0 Td [(x + a )]TJ/F30 11.9552 Tf 11.955 0 Td [(x n 1 + a + x n 1 +1+ a weassertthat p has m roots,namelythe m throotsofunity,and deg p x
PAGE 50

3.HOMEOMORPHISMCLASSIFICATION46 S 3 S 3 L m;n L m; )]TJ/F30 11.9552 Tf 9.298 0 Td [(n f 1 g 1 Alternatively,wecanalsoconsideramap f 2 : S 3 S 3 denedby f 2 z;w = w;z .Thentheidentication z;w z; n w n )]TJ/F29 5.9776 Tf 5.756 0 Td [(1 z; n )]TJ/F29 5.9776 Tf 5.757 0 Td [(1 n w willmapto w;z n w;z w; n )]TJ/F29 5.9776 Tf 5.756 0 Td [(1 z .Thus, f 2 inducesahomeomorphism, g 2 ,between lensspaces L m;n and L m;n )]TJ/F28 7.9701 Tf 6.587 0 Td [(1 S 3 S 3 L m;n L m;n )]TJ/F28 7.9701 Tf 6.587 0 Td [(1 f 2 g 2 Ofcoursewecanalsocomposethemaps g 1 and g 2 sincetheyarehomeomorphisms. Thus,wehavethat n 0 n )]TJ/F28 7.9701 Tf 6.586 0 Td [(1 1 implies L m;n 0 = L m;n 1 Example 3.4 Wecannowusethepreviousexampletodeterminethehomeomorphismclassesof L ;n for0
PAGE 51

CHAPTER7 Conclusion Aswehavedemonstrated,thehomeomorphismclassofalensspace, L m;n isuniqueupto n 1 mod m .Themajorobstacleinattainingthisclassication isunderstandinghowthevalueof n aectstheactionof mth rootsofunity on pairs z;w in S 3 .Ourusualtopologicalinvariantsarenotsubtleenoughtodecipher thisaction.Aswesawwhencomputingthehomology,themap : S 3 L m;n eliminatesanyrelevantinformationaboutthisactionsinceallofthebersaremapped together.However,pickingouthowthefundamentalgroupactsontheuniversal coverisexactlywhatReidemeistertorsionisdesignedtodo.Insteadoflookingat theprojectionoftheboundarymapsinthequotientspace,welookattheminthe universalcoverbeforeapplyingthequotientmap.Thus,thetorsionsucceedswhere homologyandhomotopygroupsfailtoprovideclassication. Generalizingtheconstructionoflensspacesfromquotientspacesof S 3 toquotient spacesof S n and S 1 isalsopossible.Infact,theclassicationofsuchspaceswasdone byReidemeister'sstudentFranzandisnotsodierentfromthethreedimensional case.Infact,manyoftheproofsincludedherehavebeensimpliedfromthemore generalproofs.Whilethematerialhereisnotnew,IhopeIhavedemonstratedthe importanceoftopologicalinvariantsforthepurposeofsuchclassicationtheorems. 47

PAGE 52

APPENDIXA FiniteCWcomplexes Ingeneralcomputingthehomologyofanarbitrarytopologicalspace,X,canbe dicult.However,inthecasewhenXiscompactandHausdor,wethinkaboutX asbeingmadeupofpieces,eachhomeomorphictoann-ball.Suchpiecesarecalled n-cells Moreformally,givenX,compactandHausdor,wecanndanitesequence calleda niteCW-complex X 0 X 1 :: X n = X ,suchthateach X k )]TJ/F30 11.9552 Tf 12.113 0 Td [(X k )]TJ/F28 7.9701 Tf 6.586 0 Td [(1 is homeomorphictoanitenumberofdisjointk-cellsdenoted, E k 1 :::E k m .Thespace X k ,calleda k-skeleton ,isthespaceobtainedbyattachinganitenumberofkcellsto X k )]TJ/F28 7.9701 Tf 6.587 0 Td [(1 andisaniteCW-complexonitsown.Therefore,CW-complexesare usefulbothfordecomposinganexistingcompactspace,andforbuildingnewspaces, however,suchdecompositionsandconstructionsarenotunique. Example 0.5 Consider, X = S 2 .If z isapointon S 2 then X maybeconsidered asa2-cellattachedto z .However,if z 0 isanotherpointon S 2 and isapathfrom z to z 0 ,thentheassociatedCWstructureconsistsoftwo0-cells,a1-cell,anda2-cell. X mayalsobeviewedasconsistingoftwo0-cells,three1-cellsandthree2-cells. z 0 a z 0 z 1 b z 0 z 1 c 0 1 2 48

PAGE 53

A.FINITECWCOMPLEXES49 ItisimportanttorealizethatwhiletheCWdecompositionisnotunique,changing thenumberofcellsinanyparticulardimensionwillaectthenumberofcellsinother dimensions.Thisinformationisencodedinanotherpowerfulinvariant,the Euler characteristic whichcanbedenedforaniteCWcomplexas X = n X i =1 )]TJ/F24 11.9552 Tf 9.299 0 Td [(1 i i where i isthenumberofcellsindimensioni. ACWcomplex, X ,canbeassociatedwithachaincomplex,thereforewewillbe abletocomputethehomologyof X ineachdimensionusingthehomologyofthis chain.Butrst,considerthek-skeleton X k .Since X k isobtainedbyattaching m k-cellsto X k )]TJ/F28 7.9701 Tf 6.586 0 Td [(1 ,wecanthinkoftheboundaryof X k )]TJ/F28 7.9701 Tf 6.587 0 Td [(1 thereisarelativehomeomorphism, f : D k 1 [ ::: [ D k m ;S k )]TJ/F28 7.9701 Tf 6.587 0 Td [(1 1 [ ::: [ S k )]TJ/F28 7.9701 Tf 6.587 0 Td [(1 m X k ;X k )]TJ/F28 7.9701 Tf 6.587 0 Td [(1 i.e.ahomeomorphism, f ,taking D k 1 [ ::: [ D k m )]TJ/F30 11.9552 Tf 12.329 0 Td [(S k )]TJ/F28 7.9701 Tf 6.587 0 Td [(1 1 [ ::: [ S k )]TJ/F28 7.9701 Tf 6.586 0 Td [(1 m to X k )]TJ/F30 11.9552 Tf 12.33 0 Td [(X k )]TJ/F28 7.9701 Tf 6.587 0 Td [(1 suchthat S k )]TJ/F28 7.9701 Tf 6.587 0 Td [(1 1 [ ::: [ S k )]TJ/F28 7.9701 Tf 6.587 0 Td [(1 m mapsto X k )]TJ/F28 7.9701 Tf 6.586 0 Td [(1 Proposition 0.6 If X isaniteCWcomplexand X k isthek-skeletonof X then H j X k ;X k )]TJ/F28 7.9701 Tf 6.586 0 Td [(1 =0 for j 6 = k and H k X k ;X k )]TJ/F28 7.9701 Tf 6.587 0 Td [(1 isafreeabeliangroupwithone basiselementforeachk-cellof X Proof. X k )]TJ/F28 7.9701 Tf 6.587 0 Td [(1 isasubcomplexof X k ,sobytheorem4.4,itisastrongdeformation retractofacompactneighborhoodin X k .SinceXisaniteCWcomplex,thereisa relativehomeomorphism f : D k 1 [ ::: [ D k r ;S k )]TJ/F28 7.9701 Tf 6.586 0 Td [(1 1 [ ::: [ S k )]TJ/F28 7.9701 Tf 6.587 0 Td [(1 r X k ;X k )]TJ/F28 7.9701 Tf 6.587 0 Td [(1 Bytherelativehomeomorphismtheorem,theinducedmap, f : H D k 1 [ ::: [ D k r ;S k )]TJ/F28 7.9701 Tf 6.587 0 Td [(1 1 [ ::: [ S k )]TJ/F28 7.9701 Tf 6.587 0 Td [(1 r H X k ;X k )]TJ/F28 7.9701 Tf 6.586 0 Td [(1 isanisomorphism.Thus,since

PAGE 54

A.FINITECWCOMPLEXES50 H j D k 1 [ ::: [ D k r ;S k )]TJ/F28 7.9701 Tf 6.587 0 Td [(1 1 [ ::: [ S k )]TJ/F28 7.9701 Tf 6.587 0 Td [(1 r = X i H j D k i ;S k )]TJ/F28 7.9701 Tf 6.587 0 Td [(1 i =0for j 6 = k and H k D k 1 [ ::: [ D k r ;S k )]TJ/F28 7.9701 Tf 6.586 0 Td [(1 1 [ ::: [ S k )]TJ/F28 7.9701 Tf 6.587 0 Td [(1 r = X i H k D k i ;S k )]TJ/F28 7.9701 Tf 6.586 0 Td [(1 i isfreeabelian,theresultfollows. GivenaCWdecompositionof X ,thereisanassociatedchaincomplexoffree abeliangroups.Dene, C k X = H k X k ;X k )]TJ/F28 7.9701 Tf 6.587 0 Td [(1 Usingthefactorization, H k )]TJ/F28 7.9701 Tf 6.587 0 Td [(2 X k )]TJ/F28 7.9701 Tf 6.587 0 Td [(1 H k +1 X k +1 ;X k H k X k ;X k )]TJ/F28 7.9701 Tf 6.587 0 Td [(1 H k )]TJ/F28 7.9701 Tf 6.586 0 Td [(1 X k )]TJ/F28 7.9701 Tf 6.586 0 Td [(1 ;X k )]TJ/F28 7.9701 Tf 6.587 0 Td [(2 H k )]TJ/F28 7.9701 Tf 6.587 0 Td [(1 X k )]TJ/F28 7.9701 Tf 6.587 0 Td [(1 @ @ @ 00 j @ 0 i wecandene @ = i @ 0 andwegetthat @ @ =0thus f C k g k isachaincomplex withthemap @ Remarkably,thehomologyofthischaincomplexisthesameasthesingularhomologyofX. Theorem 0.7 IfXisaniteCWcomplex,then H k C X H k X foreachk.

PAGE 55

Bibliography [1]MarshallM.Cohen. Acourseinsimple-homotopytheory .Springer-Verlag,NewYork,1973. GraduateTextsinMathematics,Vol.10. [2]ThomasW.Hungerford. Algebra ,volume73of GraduateTextsinMathematics .Springer-Verlag, NewYork,1980.Reprintofthe1974original. [3]WilliamS.Massey. Abasiccourseinalgebraictopology ,volume127of GraduateTextsinMathematics .Springer-Verlag,NewYork,1991. [4]LiviuI.Nicolaescu.Notesonthereidemeistertorsion.unpublishedbook,January2002. [5]VladimirTuraev. Introductiontocombinatorialtorsions .LecturesinMathematicsETHZurich. BirkhauserVerlag,Basel,2001.NotestakenbyFelixSchlenk. [6]JamesW.Vick. Homologytheory .AcademicPress,NewYork,1973.Anintroductiontoalgebraic topology,PureandAppliedMathematics,Vol.53. [7]GeorgeW.Whitehead. Elementsofhomotopytheory ,volume61of GraduateTextsinMathematics .Springer-Verlag,NewYork,1978. 51


ERROR LOADING HTML FROM SOURCE (http://ncf.sobek.ufl.edu//design/skins/UFDC/html/footer_item.html)