ERROR LOADING HTML FROM SOURCE (http://ncf.sobek.ufl.edu//design/skins/UFDC/html/header_item.html)

Measurement of the Proton Spin Structure Function g1 with Data from the EG1-DVCS Experiment

Permanent Link: http://ncf.sobek.ufl.edu/NCFE004431/00001

Material Information

Title: Measurement of the Proton Spin Structure Function g1 with Data from the EG1-DVCS Experiment
Physical Description: Book
Language: English
Creator: Pedersen, Christopher
Publisher: New College of Florida
Place of Publication: Sarasota, Fla.
Creation Date: 2011
Publication Date: 2011

Subjects

Subjects / Keywords: Physics
Particles
Proton
Quark
Quantum Chromodynamics
Genre: bibliography   ( marcgt )
theses   ( marcgt )
government publication (state, provincial, terriorial, dependent)   ( marcgt )
born-digital   ( sobekcm )
Electronic Thesis or Dissertation

Notes

Abstract: The EG1-DVCS experiment took place in Hall B of Thomas Jefferson National Accelerator Facility for 128 days in 2009. It scattered longitudinally polarized electrons from a longitudinally polarized 14 N H 3 target. The data has been calibrated and is ready for analysis. From this data the spin structure function g1 can be calculated. This structure function gives a way to observe the internal spin structure of the proton.
Statement of Responsibility: by Christopher Pedersen
Thesis: Thesis (B.A.) -- New College of Florida, 2011
Electronic Access: RESTRICTED TO NCF STUDENTS, STAFF, FACULTY, AND ON-CAMPUS USE
Bibliography: Includes bibliographical references.
Source of Description: This bibliographic record is available under the Creative Commons CC0 public domain dedication. The New College of Florida, as creator of this bibliographic record, has waived all rights to it worldwide under copyright law, including all related and neighboring rights, to the extent allowed by law.
Local: Faculty Sponsor: Colladay,Don

Record Information

Source Institution: New College of Florida
Holding Location: New College of Florida
Rights Management: Applicable rights reserved.
Classification: local - S.T. 2011 P37
System ID: NCFE004431:00001

Permanent Link: http://ncf.sobek.ufl.edu/NCFE004431/00001

Material Information

Title: Measurement of the Proton Spin Structure Function g1 with Data from the EG1-DVCS Experiment
Physical Description: Book
Language: English
Creator: Pedersen, Christopher
Publisher: New College of Florida
Place of Publication: Sarasota, Fla.
Creation Date: 2011
Publication Date: 2011

Subjects

Subjects / Keywords: Physics
Particles
Proton
Quark
Quantum Chromodynamics
Genre: bibliography   ( marcgt )
theses   ( marcgt )
government publication (state, provincial, terriorial, dependent)   ( marcgt )
born-digital   ( sobekcm )
Electronic Thesis or Dissertation

Notes

Abstract: The EG1-DVCS experiment took place in Hall B of Thomas Jefferson National Accelerator Facility for 128 days in 2009. It scattered longitudinally polarized electrons from a longitudinally polarized 14 N H 3 target. The data has been calibrated and is ready for analysis. From this data the spin structure function g1 can be calculated. This structure function gives a way to observe the internal spin structure of the proton.
Statement of Responsibility: by Christopher Pedersen
Thesis: Thesis (B.A.) -- New College of Florida, 2011
Electronic Access: RESTRICTED TO NCF STUDENTS, STAFF, FACULTY, AND ON-CAMPUS USE
Bibliography: Includes bibliographical references.
Source of Description: This bibliographic record is available under the Creative Commons CC0 public domain dedication. The New College of Florida, as creator of this bibliographic record, has waived all rights to it worldwide under copyright law, including all related and neighboring rights, to the extent allowed by law.
Local: Faculty Sponsor: Colladay,Don

Record Information

Source Institution: New College of Florida
Holding Location: New College of Florida
Rights Management: Applicable rights reserved.
Classification: local - S.T. 2011 P37
System ID: NCFE004431:00001


This item is only available as the following downloads:


Full Text

PAGE 1

MeasurementoftheProtonSpinStructure Functiong1WithDataFromtheEG1-DVCS Experiment By ChristopherE.Pedersen AThesis SubmittedtotheDivisionofNaturalSciences NewCollegeofFlorida InPartialFulfillmentoftheRequirementsfortheDegree BachelorofArtsinPhysics WrittenUndertheSponsorshipofProfessorDonColladay Sarasota,Florida May,2011

PAGE 2

AcknowledgementsIwouldliketothankDonColladayforsponsoringmythesis;G eorgeRuppeinerandMariana SendovaforsittingonmyBACCcommittee;KeithGrioenandS uchetaJawalkarforthe immenseamountofhelptheygavemewithmythesis;myparents DaveandSuewhohave alwaysbeenthereforme;andmyfriendsBenReinhold,ShaqKa tikala,DolanCochran, RikkiMiller,MikeDexter,TomMcKay,SarahIacobucci,JenZ immermanandmanyothers whohavemademytimeatNewCollegesospecial. i

PAGE 3

Contents1Introduction 1 1.1Nucleons......................................11.2TheExperiment.................................2 2Theory 10 2.1Scattering....................................102.2Electron-muonScattering......................... ...14 2.3KinematicsofDeepInelasticScattering............. .......15 2.4StructureFunctions.............................. .18 2.5Therstmomentof g 1 andsumrules.....................21 3DataAnalysis 23 3.1DilutionFactor.................................. 26 3.2BackgroundParticleCorrections................... .....30 3.3Calculating g 1 ..................................33 4ComparisontoOtherDataandConclusions33 ii

PAGE 4

ListofFigures 1ThomasJeersonNationalLaboratoryandtheConstantElec tronBeamAcceleratorFacilityfrom[1]........................... ..3 2ASuperconductingradio-frequencycavityfromJLab[2].. .........4 3Thedynamicsofastandingwavefrom[3].Thegureshowsthe amplitudeof thetwowavescreatingthestandingwaveandtheamplitudeof thestanding waveatdierenttimes.Theverticaldashedlinesarepositi onsofantinodes andtheverticaldottedlinesarepositionsofnodes....... ........5 4Theideabehindalinearacceleratorwithanoscillatingel ectromagneticeld from[4].IntheCEBAFthelengthsareallthesamebecausethe particlesvelocityisalreadyveryclosetothespeedoflightandd oesnotchange signicantly.....................................6 5AschematicofthebeammonitoringdevicesinhallBfrom[5] .OneBPM andoneharparelocatedfurtherupthebeamlineandarenotsh own....7 6Ammoniabeadsinsidethetargetinsert................. ....8 7AschematicofthetargetassemblyinsidetheCLASdetector from[6].The dashedlinesrepresentthedetectortorusmagnetpositionp rojectedontothe cutofthetarget..................................9 8TheCLASdetector.Thetorusmagnetsareyellow,thedriftc hambersarein blue,theCherenkovcountersareinmagenta,thescintillat ioncountersare inredandtheelectromagneticcalorimetersareingreen... .........10 9DierentialScatteringCrosssection................. .....11 10Electron-muonscatteringdiagram.Theelectronhasinit ialandnal4momentumkand k 0 andthemuonhasinitialandnal4momentumpand p 0 ..........................................14 11KinematicsofDeepInelasticScattering.............. .......15 iii

PAGE 5

12Apolarizedelectroninteractingwithapolarizedproton .Theinitialspins areshownin(i).Theelectronemitsaphotonofspinoneandri psspinsin (ii).Thespincongurationafterthequarkabsorbstheprot onisshownin (iii).........................................20 13Countsforthetoptargetwithbeamandtargetpolarizatio nnegative.The xaxisis Q 2 ,theyaxisisWandthezaxisisnumberofcounts........24 14Materialsinthebeamlinefrom[7].................... ....27 15Dilutionfactorforthetoptargetforarangeof Q 2 binsplottedagainstW forpointswithanuncertaintyoflessthan0.05........... ......29 16ThedynamicsofCherenkovradiationfrom[8]........... ......31 17ACherenkovspectrumwithnumberofphotoelectronsdetec tedonthex axisandnumberofparticlesontheyaxis.Thereddotsarethe electron signal,thecyandotsarethetabove2photoelectrons,theb luedotsare thepionsdetectedusingtheelectromagneticcalorimetera ndothercuts,and thebrownsquaresarethispionsignalscaledtothedierenc ebetweenthe electronsignalandthet.[5]......................... ..37 18Theasymmetrieswiththepolarizationanddilutionfacto rtakenintoaccount areshowninblack.Theasymmetrieswiththepolarization,d ilutionfactor, pairelectroncorrection,andstandardpioncorrectionare showninred.The asymmetrieswiththepolarization,dilutionfactor,paire lectroncorrection, andtotalpioncorrectionareshowninblue.Allofthesearef orthetoptarget.38 19Theenergyofthedetectedelectronforbinswithcounts.. ..........38 20 g 1 forthetoptargetwith A 2 =0inblackand A 2 = p R inblue.......39 21 g 1 with A 2 =0forthetoptargetinblackandforthebottomtargetinred. 39 22 g 1 withthetoptargetinblackandforthebottomtargetinred,an ddata fromEG1bwithapproximatelythesame Q 2 valueplottedingreen.The valuesfortheEG1bexperimentarefrom[9]............... ...40 iv

PAGE 6

Abstract TheEG1-DVCSexperimenttookplaceinHallBofThomasJeers onNational AcceleratorFacilityfor128daysin2009.Itscatteredlong itudinallypolarizedelectrons fromalongitudinallypolarized 1 4 NH 3 target.Thedatahasbeencalibratedandis readyforanalysis.Fromthisdatathespinstructurefuncti on g 1 canbecalculated. Thisstructurefunctiongivesawaytoobservetheinternals pinstructureoftheproton. v

PAGE 7

1Introduction1.1NucleonsProtonsandneutronsarethetwotypesofparticleswhichmak eupatomicnucleiand arereferredtoasnucleons.Nucleonsarenotthemselvesfun damentalparticles.Theyare hadronswhicharecompositeparticlesconsistingofquarks andgluons.Quarksandgluons arefundamentalparticlesofthestandardmodelofparticle physicsandtheonlyparticles whichinteractthroughthestrongforce.Gluonsarethecarr iersofthestrongforcewhich holdthequarkstogetherintohadrons.Thestrongforceisun iqueinthatthestrengthof theforceincreasesasthequarksaremovedfurtherawayfrom eachother.Thisleadstoa phenomenaknownasconnementinwhichquarksdonotmovefre elyasindividualparticles, butarealwaysfoundinhadrons.Therearetwotypesofhadron s,baryonsandmesons. Valencequarksdeterminethequantumnumberofhadrons.Bar yonsconsistofthreevalence quarksandincludenucleonsandothermoreexoticparticles whichcanbecreatedusing particlesacceleratorsorwhencosmicraysinteractwithth eatmosphere.Mesonsconsistof quarkanti-quarkpairsandarecreatedasvirtualparticles insidenucleiwheretheyholdthe nucleonstogetherandcanalsobecreatedthroughcosmicray interactionsandinparticle accelerators.Thenatureofthestrongforcealsoleadstoas ymptoticfreedomwhereat smalldistancescalesorlargeenergyscalesthequarksinte ractweakly.Thismeansthat ifanucleonisprobedwithalowenergyparticlethequarkint eractionisstrongandthe quarksrespondasacoherentgroup,butathigherenergiesth equarksdonotrespondtothe probecoherentlyandthequarkisknockedoutofthenucleon. Whenthishappensquark anti-quarkpairsarespontaneouslycreatedfromvacuumbec auseittakeslessenergyfor thispairofquarkstobecreatedthantostretchthegluon.Th eoriginalnucleoncapturesa quarkandremainsasabaryonandaquarkanti-quarkryotoget herasamesonandcan createwhatiscalledajetifthereisenoughenergybysplitt ingandcreatingmorehadrons. Nucleonsarespin1/2particlesasarequarks.Theoriginalm odelofthenucleonconsistedofthethreevalencequarksheldtogetherbythegluon swiththespinofthenucleon comingentirelyfromthespinangularmomentumofthevalenc equarks,andnothaving contributionsfromthegluonspinsortheorbitalangularmo mentum.Inexperimentsatthe 1

PAGE 8

StanfordLinearAccelerator(SLAC)andtheEuropeanOrgani zationforNuclearResearch (CERN)itwasshownthatthespinofthevalencequarksactual lycontributesverylittle tothenucleonspin[10].Sincenucleonsarespin1/2conserv ationofangularmomentum requiresthat 1 = 2= S q + G + L z ; (1) where S q isthesumofthequarkspins, G isthesumofthegluonspins,and L z isthe totalorbitalangularmomentum.Ithasbeenshownbyunpolar izedleptonprotonscattering experimentsthatthevalencequarksarenottheonlyquarksw hichcanbeinteractedwith insidethenucleon.Therearealsoquarkanti-quarkpairscr eatedbysplittingofthegluons insidethenucleon.Theyrapidlyannihilatewitheachother ,butstillaectthemomentum ofthenucleon.Thesemayalsohaveanimpactonthespinofthe nucleonbothintheform ofspinandangularmomentum.1.2TheExperimentTheEG-1DVCSexperimentwasconductedattheThomasJeerso nNationalAcceleratorFacility(TJNAF)showningure1usingtheelectronbeam fromtheConstantElectronBeamAcceleratorFacility(CEBAF)andtheCEBAFLargeA cceptanceSpectrometer(CLAS)detectorinHallB.Theexperimentwasconductedo veraperiodof128daysin 2009. Theelectronsourcecreateselectronsusingthephotoelect riceect.Alaserisshown ontoaGaAscrystalcausingexcitationandemissionofelect rons.Thelaseriscircularly polarizedandbychangingthedirectionofpolarizationthe spinoftheelectroncanbe selected.Aftertheelectronsareproducedbytheelectrons ourcetheyareacceleratedupto anenergyof67MeVintheinjector.Usingtheequationforrel ativisticenergy E = mc 2 q 1 v 2 c 2 ; (2) andthatthemassoftheelectronis0.511MeV,thismeansthat whentheelectronsleave theinjectortheyarealreadytravelling99.99%thespeedof light. 2

PAGE 9

Figure1:ThomasJeersonNationalLaboratoryandtheConst antElectronBeamAcceleratorFacilityfrom[1]. Theelectronsarethenfedintotheaccelerator.TheCEBAFis madeupoftwostraight sectionswhicharelinearacceleratorsandtwo180degreetu rnsconsistingof9recirculating beamlines.Theelectronsareguidedthroughtherecirculat ingbeamlinesbymagnets.The electronscirculatethroughtheacceleratoruptovetimes reachinganalbeamenergy ofupto6GeV.Itiseectivelyalinearacceleratorshrunkto 1/10thitslength.Allof theelectronsareatextremelyrelativisticvelocitieswhi chmeansthatgroupsofelectrons ofdierentenergiescanbeacceleratedtogether,butmustb esplitandgothroughdierent beamlinestoberecirculated. Thelinearacceleratorsconsistofsuperconductingradiofrequencycavitiesshownin gure2.Thesearemadeofniobiumwhichiscooledtosupercon ductingtemperatures usingliquidhelium.Theaccelerationisaccomplishedbyan oscillatingelectromagnetic eldwhichresonatesinsidethecavities.Theelectromagne ticeldoscillatesinastanding wavewhichmeanstheamplitudehasastationaryspatialdepe ndence.Standingwaveshave nodesatwhichtheamplitudeisalwayszeroandanti-nodesat whichtheamplitudereaches itsmaximumasseeningure3.Thecavitiesaretunedsuchtha tasagroupofelectronsis passingeachanti-nodeitswitchesfrombeingathighpotent ialtobeingatalowpotential sothattheelectronsareacceleratedtowardsthenextantinodeasshowningure4.The 3

PAGE 10

Figure2:ASuperconductingradio-frequencycavityfromJL ab[2]. cavitiesintheCEBAFacceleratorconsistof5cells,are0.5 mlongandoperateat1497 Mhz[1].Thecavitiesaregroupedintocryomoduleswhicheac hcontain8cavitiesandthere are20cryomodulesineachlinearaccelerator.Thecavities haveanacceleratinggradientof 7.5MV/m.Sincethereare160cavitieswhichare0.5mlongine achlinearacceleratorhas agradientof600MVandthetotalacceleratingpotentialis6 GVafter5passesthrough bothaccelerators.Toprovidethebeamtothethreeseparate hallssimultaneously499Mhz rfderectingcavitiesareused.Thesesendeverythirdbunch ofthebeamtoeachhall. OncethebeamissenttohallBthereareseveraldeviceswithi nthehallusedfor monitoringthebeamasshowningure5.Thebeampositionmon itors(BPMs)constantly measurethepositionandintensityofthebeamat1Hz.Theele ctronbeamprolemonitors calledharpsaremadeupofverythinwiresoftungsten(20and 50 m )andiron(100 m ) [6].Whenmeasurementsaretakenthesewiresaremovedthrou ghthebeamlineand thescatteredelectronsaredetectedinaCherenkovcounter .Thismeasurementdisturbs thebeamandcanonlybedonewhentheexperimentisnottaking data.Tominimize 4

PAGE 11

Figure3:Thedynamicsofastandingwavefrom[3].Thegures howstheamplitudeofthe twowavescreatingthestandingwaveandtheamplitudeofthe standingwaveatdierent times.Theverticaldashedlinesarepositionsofantinodes andtheverticaldottedlinesare positionsofnodes.downtimefromtakingdatathismeasurementisonlydonewhen therearechangestothe beamdeliveredtothehallorifthereseemstobeaproblemwit htheelectronbeam. AMollerpolarimeterisusedtomeasurethebeampolarizatio n.TheMollerpolarimeter measurestheasymmetryinpolarizedelasticelectron-elec tronscattering.Thetargetofthe Mollerpolarimeterconsistofa25 m permendurfoilwhichisanalloyof49%cobalt,49% iron,and2%vandium.Itispositionedata20 angletothebeamlineandtheelectrons inthelmarepolarizedusingamagneticeld.Theelectrons whichscatteroofthislm areseparatedfromthebeambymagnetsanddetectedintwodet ectorsoneithersideofthe beamline.Thepolarizationisthencalculatedusingthekno wnpolarizationoftheelectrons inthelmandthescatteringparameters.Sincemeasurement swiththeMollerPolarimeter 5

PAGE 12

Figure4:Theideabehindalinearacceleratorwithanoscill atingelectromagneticeldfrom [4].IntheCEBAFthelengthsareallthesamebecausethepart iclesvelocityisalready veryclosetothespeedoflightanddoesnotchangesignican tly. alsointerferewiththebeamtheyareonlytakenperiodicall y. Locateddownstreamfromthedetectorandtargetattheendof thebeamlineisthe Faradaycup(FC)whichconsistsof4000kgofleadsupportedb yinsulatingceramicstandos insideavacuumchamber.Itisusedtocollectelectronsandm easurethecurrentrunningto groundandthereforethebeamcurrent.TheFaradaycupsigna lissortedbybeamhelicity andcanbeusedtomeasureandcorrectfordierencesinbeamc urrents. Thetargetusedinthisexperimentwasmadeofsmallammonia( 147 N 11 H 3 )beads.These canbeseeninsidethetargetinsertinFigure6.Thehydrogen atomswhichconsistofone protonarepolarizedusingatechniquecalledDynamicNucle arPolarization(DNP).In thistechniqueunpairedelectronsmustbeinducedintheamm oniabyionizingradiationat temperaturesaround80Kusingeitherthe20MeVelectronbea mattheStanfordUniversity SUN-SHINEfacilityorthe38MeVelectronbeamattheTJNAFFr eeElectronLaser[6]. Theammoniaisstoredinliquidnitrogenuntilitisusedfort hetarget. Topolarizethetargetthetemperatureisdroppedto1Kanda5 Tmagneticeldis applied.Thelargemagneticeldcreatesasignicantdier enceinenergiesbetweenan 6

PAGE 13

Figure5:AschematicofthebeammonitoringdevicesinhallB from[5].OneBPMand oneharparelocatedfurtherupthebeamlineandarenotshown electronwithspinparallelandantiparalleltothemagneti celd.Theratioofthespins canbefoundusingtheMaxwell-Boltzmanndistributionanda ttheverylowtemperature atwhichthetargetiskeptalmostalloftheelectronsareint helowerenergystate.This polarizesthefreeelectronspinsalmostcompletely.Micro waveswithanenergynearthe dierenceintheenergyforthetwoelectronspinstatesareu sedtocausetransitionswhere thespinofbothanelectronandanearbyprotonareripped.Th eelectronreturnstothe lowerenergyspinstateveryrapidlywhiletheprotondoesno tandcanbeusedtoripthe spinofothernearbyprotons.Thisisusedtocreateanoveral lpolarizationintheprotons. Additionalirradiationfromtheelectronbeamoftheaccele ratorfreeshydrogenatomsfrom theammoniawhichdecreasetheabilitytopolarizethetarge t.Annealingthetargetat 80-100Kallowsthesefreehydrogenatomstorecombinewitht heammoniaoroutgas. Afterthisprocessthetargetcanberepolarizedtonearit's originalmaximum,butafter toomanycyclesofannealingthepolarizationcannotbereco vered. Allofthesystemsnecessarytopolarizeandmeasurethepola rizationofthetargetare 7

PAGE 14

Figure6:Ammoniabeadsinsidethetargetinsert. includedinapolarizedtargetsystemwhichisinsertedinto thefrontoftheCLASdetector asshowninFigure7.Thesesystemsincludetherefrigeratio nsystemnecessarytokeep thetargetat1K,the5Tmagnet,themicrowavesource,anNMRs ystemtomeasurethe polarizationofthetarget,andthetargetinsert. TheCLASdetectorcontainsmanydierentlayersofdierent typesofdetectorsas showninFigure8.Thedetectoriscutinto6equivalentsecti onsbythe6superconducting magnets.Thesemagnetsprovideamagneticeldwhichbendst hepathofchargedparticles movingthroughthem.Thisbendinthepathcanthenbeseenbyt heotherdetectorsand usedtodeterminethechargeandmomentumoftheparticle.Th eshapeofthemagnets causesthemagneticeldtobestrongerforforwardangles,w eakerforbackwardangles, andzeroatthecenterofthedetectorinthetargetarea. Thedriftchambersmeasurethetrajectoriesandmomentumof chargedparticles.They containagaswhichisionizedbypassingchargedparticles. Throughthisgaswiresare strungandarekeptatdierentpotentialstocreateanelect riceld.Theelectronsfrom theionizedparticlesinthegasareacceleratedtowardthew ireswithhigherpotentialwith astrongenoughpotentialtocausethemtoionizemorepartic lesinthegas.Thiscascade 8

PAGE 15

Figure7:AschematicofthetargetassemblyinsidetheCLASd etectorfrom[6].Thedashed linesrepresentthedetectortorusmagnetpositionproject edontothecutofthetarget. ofionizedelectronscreatesameasurablecurrentinthewir esclosesttowheretheoriginal chargedparticlepassed.Thepositionsofthewireswhichha dacurrentcanthenbeusedto ndthepositionofthechargedparticleinthechamber.Thed istanceofclosestapproachto eachwirecanalsobecalculatedusingthetotaltimeofright fromthescintillationcounters andthechargedriftvelocity.Thereare3layersofdriftcha mbersinthedetectoratdierent radialdistancesfromthetargetwhichareusedtoreconstru ctthepath.Oncethepathof theparticleinthemagneticeldisknown,themomentumcanb ecalculated. Thescintillatorcountersemitelectromagneticradiation whenachargedparticlepasses throughthem.Theamountofenergydepositedinthescintill atorcountersisdeterminedby theamountoflightproduced.Thiscanbeusedforparticleid entication.Thescintillator countersarealsousedasanaccuratewaytomeasurethetimeo frightofaparticlewhich canbeusedtocalculatethevelocityandthereforethemassp rovidedthemomentumis known.TheCherenkovcountersareusedtodistinguishbetwe enelectronsandnegative pionsandaredescribedinsection3.2.Theelectromagnetic calorimeterconsistsoflayers ofleadandscintillatormaterial.Itmeasurestheenergyde positedbytheparticleandthe depthinthedetectoratwhichtheenergyisdepositedtodete rminetheenergyandtype ofparticle.Itcandistinguishbetweenelectronsandnegat ivepionsbecauseelectronsloose 9

PAGE 16

Figure8:TheCLASdetector.Thetorusmagnetsareyellow,th edriftchambersarein blue,theCherenkovcountersareinmagenta,thescintillat ioncountersareinredandthe electromagneticcalorimetersareingreen.theirenergyprimarilythroughbremsstrahlungradiationa ndnegativepionsprimarilyloose theirenergythroughionization[5].2Theory2.1ScatteringThequantitywhichisusedtodescribescatteringisthedie rentialscatteringcrosssection d d n .Thequantitybiscalledtheimpactparameterandisthedist anceoftheparticle's originalpathfromthecenterofthescattering.Itcanbesee nfromFigure9forclassical 10

PAGE 17

d d d b d n Figure9:DierentialScatteringCrosssection. scatteringifparticlespassthroughanarea d = j bdbd j ; (3) thentheyscatterthroughasolidangle d n= j sin( ) dd j : (4) Thismeansthatthedierentialcrosssectionis d d n = j b sin( ) db d j : (5) Thecrosssectionforscatteringofparticlesaectedbyqua ntummechanicsisdierent thantheclassicalcalculationabovebecausethereareinci dentandoutgoingwavesinstead ofclassicalparticles.Itdependsonbothdynamicinformat ionwhichiscontainedinthe scatteringamplitude( M )andthekinematicsinvolvedwhichiscontainedinthephase spacefactorandincidentrux.Thephasespacefactoristhek inematicinformationinside theintegralandtheincidentruxisthedenominatorofthete rminfrontoftheintegral 11

PAGE 18

inequation(6).Thescatteringcrosssectionforincidentp articles1and2scatteringand formingoutgoingparticles3,4,...,nis[11] = S 4 q ( p 1 p 2 ) 2 ( m 1 m 2 ) 2 Z j M j 2 (2 ) 4 4 ( p 1 + p 2 p 3 p n ) n Y j =3 2 ( p 2j m 2j ) ( p 0j ) d 4 p j (2 ) 4 ; (6) wherePlanck'sconstant h andthespeedoflightchavebeensetto1.Foreachgroup of s i identicalparticleswith i =1 ; 2 ;:::;m andmbeingthenumberofdierentparticles inthenalstate S = 1 ( s 1 !)( s 2 !) ::: ( s m !) isthesymmetryfactor. m j and p j arethemass andfour-momentumofthejthparticle. istheDiracdeltafunctionwhichisequalto 0everywhereexcepttheoriginandintegratesto1.Thefunct ion istheHeavisidestep functionwhichis0if x< 0and1for x> 0. p 0j istherstcomponentofthefourmomentumvector,ortheenergyEoverthespeedoflight,ofth ejthparticles.Thedelta function ( p 2j m 2j c 2 )isequivalenttotherelativisticmassenergyequation p 2j = m 2j c 2 Thisconditioniscalledon-shellandmustalwaysbesatise dforrealparticles.Realor observableparticlesarethosewhichenterorexitanintera ction.Particleswhichpropagate interactionsarevirtualparticleswhichdonothavetobeon -shell.Thestepfunction ( p 0j ) isequivalenttotheenergyofalloftheoutgoingparticlesb eingpositive,andthedelta function 4 ( p 1 + p 2 p 3 p n )implementsenergyandmomentumconservation.The crosssectioncanbeintegratedover p 0j and = S 4 q ( p 1 p 2 ) 2 ( m 1 m 2 ) 2 Z j M j 2 (2 ) 4 4 ( p 1 + p 2 p 3 p n ) n Y j =3 1 2 q ~p 2j m 2j d 3 p j (2 ) 3 ; (7) with p 0j = q ~p 2j m 2j ; (8) where ~p j isthethree-momentumofthejthparticle. Usingtheseformulas,thedierentialcrosssectionforela sticscattering,wheretheinitial andnalparticlesarethesamecanbecalculated.Inthelabf ramewhereparticle2is 12

PAGE 19

initiallyatresttheincidentruxinthelabframecanbewrit tenas q ( p 1 p 2 ) 2 ( m 1 m 2 ) 2 = m 2 j ~p 1 j ; (9) sothat = S 64 2 m 2 j ~p 1 j Z j M j 2 4 ( p 1 + p 2 p 3 p 4 ) p ~p 23 m 23 p ~p 24 m 24 d 3 ~p 3 d 3 ~p 4 : (10) Rewritingthedeltafunctionas 4 ( p 1 + p 2 p 3 p 4 )= E 1 + m 2 p 03 p 04 3 ( ~p 1 ~p 3 ~p 4 ) ; (11) andintegratingover ~p 4 sendsitto ~p 4 = ~p 1 ~p 3 .Usingequation(8) = S 64 2 m 2 j ~p 1 j Z j M j 2 E 1 + m 2 q ~p 3 2 m 23 p ( ~p 1 ~p 3 ) 2 m 23 p ~p 23 m 23 p ( ~p 1 ~p 3 ) 2 m 24 d 3 ~p 3 : (12) Switchingtosphericalcoordinateswhere d 3 ~p 3 = r 2 drd nandintegratingoverrthedierentialcrosssectionis d d n = S 64 2 j M j 2 ~p 23 m 2 j ~p 1 jj ( E 1 + m 2 ) j ~p 3 jj ~p 1 j E 3 cos j : (13) Mottscatteringisthecasewere m 2 E 1 inwhichcasetherecoilofthesecondparticle isnegligibleandthemagnitudeoftheincomingandoutgoing momentumforthemoving particleisthesame.ThecrosssectionforMottscatteringi s d d n = S 64 2 j M j 2 m 22 : (14) Tocalculatethecrosssectionthescatteringamplitudesne edtobecalculatedfortheFeynmandiagramoftheparticularinteractionusingwhatarecal ledFeynmanruleswhichcan befoundin[11]. 13

PAGE 20

k p e k 0 p 0 Figure10:Electron-muonscatteringdiagram.Theelectron hasinitialandnal4momentumkand k 0 andthemuonhasinitialandnal4momentumpand p 0 2.2Electron-muonScatteringElectron-muonscatteringissimilartotheelectron-proto nscatteringexceptthatthemuon isapointparticleunliketheprotonsothescatteringampli tudecanbecalculatedexplicitly. Becausethemuonhasamuchlargermassthantheelectron,rec oilisneglectedandthe crosssectioniswrittenintermsofthescatteringamplitud ebyequation(14).Tocalculate thescatteringamplitudeinthecasewheretheparticlesare notpolarizedandtheirnal spinsarenotdetected,theinitialspinsareaveragedandth enalspinsaresummedover. Usingthismethodthescatteringamplitudecanbewrittenas [11,12] hj M j 2 i = (4 ) 2 q 4 L e L p ; (15) where L e isthetensorassociatedwiththeelectronvertex, L p isthetensorassociated withthemuonvertex,and isthenestructureconstant.Inthecaseofelectron-muon scatteringwheretheelectronmassisneglectedtheseare L e =2( k 0 k + k 0 k ( k 0 k ) g ) ; (16) 14

PAGE 21

and L p =2( p 0 p + p 0 p ( p 0 p M 2 ) g ) : (17) Thescatteringamplitudecannowbecalculatedandis hj M j 2 i = (4 ) 2 q 4 8 ( k 0 p 0 )( k p )+( k 0 p )( k p 0 ) M 2 ( k 0 k ) = (4 ) 2 Q 4 16 M 2 E 0 E cos 2 ( = 2)+ Q 2 2 M 2 sin 2 ( = 2) ; (18) where q = k k 0 isthe4-momentumofthevirtualphoton, Q 2 = q 2 isthepositive 4momentumsquared,and isthelaboratoryscatteringangle.Inthelaboratoryframe wherethemuonisinitiallyatrest,thecrosssectioncannow bewrittenintermsofquantities measuredexperimentallyas[13] d d n = 4 2 E 0 3 EQ 4 cos 2 2 1+ 2 2 Q 2 tan 2 2 ; (19) whereEistheinitialenergyoftheelectron, E 0 isthenalenergyoftheelectron,and = E E 0 istheenergyofthevirtualphoton. 2.3KinematicsofDeepInelasticScattering X k k' q P e e' W Figure11:KinematicsofDeepInelasticScattering. QuantumElectrodynamics(QED)saysthatthelowestorderel ectromagneticinteraction betweenanelectronandanucleonismediatedbyavirtualpho ton.Deepinelasticscattering 15

PAGE 22

allowsprobingoftheinsideofanucleon.Thedeepindeepine lasticscatteringmeansthe virtualphotonhasenoughenergytointeractwithasinglequ arkinsidethenucleon.This isequivalenttothephotonhavingasmallenoughwavelength toresolvetheinsideofthe protonandhappenswhen Q 2 M 2 .Inelasticmeansthatthephotontransfersenough energytocausethenucleontobreakintomultiplehadronswh ichhappenswhen W 2 M 2 Ininclusivemeasurementsonlytheoutgoingelectronisdet ectedandthekinematicsofthe collisionarecalculatedfromtheinitialenergyE,thenal energy E 0 ,angleofderection oftheelectroninthelabframe,andthemassofthenucleonM. Ingure11,kisthe4momentumoftheincomingelectron,Pisthe4-momentumofthe incomingnucleonwhich is(M,0,0,0)inthelabframe,qisthe4-momentumtransfered bythevirtualphoton, k 0 isthe4-momentumoftheelectronaftertheinteraction,and Wisthetotalmassofthe recoilingsystem.Themassoftheelectronisignoredinthef ollowingcalculationsbecause theelectronsareatextremelyhighenergies.Importantqua ntitieswhichcanbecalculated fromexperimentaldataare = P q M = E E 0 ; (20) whichistheelectron'senergylossinthelabframeandtheen ergyofthevirtualphoton, Q 2 = q q =4 EE 0 sin 2 2 ; (21) where isthescatteringangleinthelabframe, W 2 =( P + q ) 2 = M 2 +2 M Q 2 ; (22) and x = Q 2 2 P q = Q 2 2 M (23) inthelabframe.InwhatiscalledtheBreitreferenceframe =0sothevirtualphotoncarriesnoenergy.Thisframecanalwaysbefoundbecause inthelabframe Q 2 = 4 EE 0 sin 2 2 = ~q 2 2 0.Becausethevirtualphotonhasnoenergyifitinteractswi th anasymptoticallyfreequark,themomentumofthequarkmust bethesamebeforeand 16

PAGE 23

aftertheinteractionso p qf ( z )= p qi ( z )+ Q = p qi ( z ) ; (24) where p qi ( z )and p qf ( z )aretheinitialandnalmomentumofthestruckquarkinthez direction.Thisrequiresthat p qi = Q 2 forthequarktointeractwithavirtualphoton.In thisframetheproton4-momentummustbe P i =( M j ~q j Q ; 0 ; 0 ; P q Q )[13].Thismeansthat x = Q 2 2 P q = Qp qi ( z ) P q = p qi ( z ) P i ( z ) ; (25) orthatxisthefractionofthelongitudinalmomentumofthep rotoncarriedbythestruck quarkintheBreitframe. Fromelectron-muonscatteringthecross-sectionforelect ron-nucleonscatteringbysingle photonexchangecanbewrittenas d 2 d n dE 0 = 2 2 Mq 4 E 0 E L W ; (26) where W isthehadronictensorand L istheleptonictensor.Thesetensorscanbe separatedintosymmetric(s)andantisymmetric(a)parts.T heantisymmetricpartofthe hadronictensordependsonthenucleonspin S N andis[14] W ( S N )= W ( s ) + iW ( a ) ( S N ) ; (27) andtheantisymmetricpartoftheleptontensordependsonth eelectronspin S l andis L ( S l )=2[ L ( s ) + iL ( a ) ( S l )] : (28) Togetherequations(26),(27),and(28)give d 2 ( S N ;S l ) d n dE 0 = 2 Mq 4 E 0 E [ L ( s ) W ( s ) L ( a ) ( S l ) W ( a ) ( S N )] : (29) Thesymmetricpartoftheleptonictensorissimplyhalfofth eleptonictensorforthe 17

PAGE 24

unpolarizedcasebecauseitissummedovernalspins,butno tinitialspinsandis L ( s ) = k k 0 + k 0 k g ( k k 0 m 2e )(30) ,where g isthemetrictensor.Theantisymmetricpartoftheleptonic tensoris L ( a ) ( S l )= m e r S l ( k k 0 ) r ; (31) with r beingtheLevi-Civitatensor.Themostgeneralformpossibl eforthesymmetric hadronictensoraftersimplicationis 1 2 M W ( s ) = q q q 2 g W 1 ( x;Q 2 )+ 1 M 2 P P q q 2 q P P q q 2 q W 2 ( x;Q 2 ) ; (32) andtheantisymmetrictermcanbewrittenas 1 2 M W ( a ) ( S N )= r q MS r N G 1 ( x;Q 2 )+[( P q ) S r N ( S N q ) P r ] G 2 ( x;Q 2 ) M ; (33) where W 1 W 2 G 1 ,and G 2 areformsofthestructurefunctions.Theyrelatedtothe standardformsofthestructurefunctionsby F 1 MW 1 ( x;Q 2 ) ; (34) F 2 W 2 ( x;Q 2 ) ; (35) g 1 ( P q ) 2 G 1 ( x;Q 2 ) ; (36) and g 2 ( P q ) G 2 ( x;Q 2 ) : (37) 2.4StructureFunctionsFromtheinterpretationofxintheprevioussectionitiscle arthataquarkandthevirtual photoncanonlyinteractifthemomentumofthequarkintheBr eitframeobeysequation 18

PAGE 25

(24).Ifafunctionf(x)istheprobabilityofaquarkofravor fhavingamomentumbetween xand x + dx anditisassumedthatthequarksdonothaveasubstructureof theirown, theunpolarizedstructurefunction F 1 canbeexpressedas F 1 ( x )= 1 2 X f e 2f f ( x ) dx (38) where e i isthechargeofthequarkravor.Thisisfornotonlytheupand downvalence quarks,butalsofortheseaofup,down,andstrangequarks.T hequarkswhichareheavier thanstrangecanbeneglectedbecauseoftheirhighmasses.I ftheprobabilitydistribution forthemomentumsofthequarksisusedintheequationforela sticscatteringforapoint particleitcanbeshownthatitisthesamefunctionaspresen tedintheprevioussection. Theotherunpolarizedstructurefunctionis F 2 ( x;Q 2 )=2 xF 1 ( x;Q 2 ) : (39) Thecrosssectionintermsofthestructurefunctionsis d dQ 2 d = 4 2 E 0 cos 2 ( = 2) Q 4 E 1 F 2 ( x;Q 2 )+ 1 M tan 2 ( = 2) F 1 ( x;Q 2 ) : (40) Inthepolarizedcasethequarkwhichthevirtualphotoninte ractswithissubjecttothe momentumconstraints,butmustalsohavethecorrectspinto interactwiththephoton. Figure12showsanelectronscatteringfromaprotonwiththe initialspinsparallelandanti parallel.Ifthespinoftheprotonwerecarriedentirelybyt heconstituentquarks,2would havespinparalleltotheprotonand1spinantiparallel.Bec auseoftherequirementsonthe spinofthequarksitwouldbeexpectedthattheelectroncoul dscatteroofeitherofthe twoquarkswiththeirspinparalleltoprotoniftheprotonan delectronspinsareparallel whereasiftheelectronandprotonspinareantiparallelthe electroncouldonlyscatterfrom oneofthequarks.Ifmorespecicmomentumdistributionfun ctions f ( x )and f # ( x )are denedastheprobabilitydistributionfunctionsforaquar kofravorfmomentumxinthe Breitframeandhavingitsspinparallelorantiparalleltot heprotonspinthepolarized 19

PAGE 26

Figure12:Apolarizedelectroninteractingwithapolarize dproton.Theinitialspinsare shownin(i).Theelectronemitsaphotonofspinoneandripss pinsin(ii).Thespin congurationafterthequarkabsorbstheprotonisshownin( iii). structurefunctionscanbewrittenas g 1 ( x;Q 2 )= 1 2 X i e 2i h f i ( x;Q 2 ) f # i ( x;Q 2 ) i = 1 2 X i e 2i f i ( x;Q 2 ) : (41) Thecrosssectioninthelabframecanbecalculatedintermso ftheofthepolarizedstructure functionforspinparallel d "" d n dE 0 = d d n dE 0 2 2 E 0 Q 2 E E + E 0 cos ( ) M g 1 ( x;Q 2 ) 1 M g 2 ( x;Q 2 ) ; (42) where = 2 Q 2 ,andantiparallel d "# d n dE 0 = d d n dE 0 + 2 2 E 0 Q 2 E E + E 0 cos ( ) M g 1 ( x;Q 2 ) 1 M g 2 ( x;Q 2 ) : (43) 20

PAGE 27

Thepolarizedcrosssectionis d d n dE 0 polarized = 1 2 d "# d n dE 0 d "" d n dE 0 (44) andtheunpolarizedcrosssectionis d d n dE 0 unpolarized = 1 2 d "# d n dE 0 + d "" d n dE 0 : (45) Bytakinganasymmetry,theacceptanceofthedetectorcanbe canceled.Thismakesit mucheasiertomakeaccuratemeasurements.Theasymmetryis A k ( x;Q 2 )= d "# d "" d "# + d "" = d polarized d unpolarized : (46) Finally,fortheprotonthepolarizedstructurefunctionca nbeexplicitlycalculatedinterms ofthehelicitydependentquarkmomentumdistributionsfor thedierentquarkravors g 1 ( x;Q 2 )= 1 2 X i e 2i f i ( x;Q 2 )= 4 18 u ( x;Q 2 )+ 1 18 d ( x;Q 2 )+ 1 18 s ( x;Q 2 ) : (47) 2.5Therstmomentof g 1 andsumrules Byintegratingthestructurefunction g 1 ( x;Q 2 )overxthetotalspincontributionforall momentaofthequarkscanbefound.Thisintegraliscallthe rstmomentof g 1 andis p1 ( Q 2 )= Z 1 0 g 1 ( x;Q 2 ) dx = 1 2 Z 1 0 X i e 2i f i ( x;Q 2 )= 4 18 u ( Q 2 )+ 1 18 d ( Q 2 )+ 1 18 s ( Q 2 ) : (48) Isospinsymmetryisanapproximatesymmetrywhichsaysthat thestrongforcetreatsup anddownquarksthesame.Thismeansthatthequarksinproton sandneutronscanbe treatedthesameunderexchangeofupanddownquarks.Anequa tionanalogoustoequation (48)canbewrittenfortheneutronas n1 ( Q 2 )= Z 1 0 g n 1 ( x;Q 2 ) dx = 1 2 Z 1 0 X i e 2i f i ( x;Q 2 )= 1 18 u ( Q 2 )+ 4 18 d ( Q 2 )+ 1 18 s ( Q 2 ) : (49) 21

PAGE 28

TheBjorkensumrulesaysthat[14] p1 ( Q 2 ) n1 ( Q 2 )= 1 6 ( u ( Q 2 ) d ( Q 2 ))= 1 6 g a ; (50) where g a istheaxialcouplingvectorconstant. g a =1 : 26canbecalculatedfrom decay measurementsonbaryonscontainingstrangevalencequarks .Anothersumrulewhichcan bederivedusingtheBjorkensumruleandequation(48)isthe Ellis-Jaesumrule.This saythatassuming s =0, p1 ( Q 2 )= 1 12 g a + 5 36 ( u + d ) : (51) Theassumptionthat s =0comesfromassumingthattheseaquarksareunpolarized. From[15]inthesimplequarkpartonwherethequarksareatre sttheupanddownquark distributionsshouldbe u = 4 3 ; (52) and d = 1 3 : (53) Givingaspinof1/2totheprotoncomingentirelyfromthequa rks.Thisdoesnotsatisfy equation(50).Thisdierencecanbeaccountedforbytherel ativisticconstituentquark modelwhichsaythequarkaremoving.Thismodelsaysthat 75%ofthequarksangular momentumiscomesfromthespinofthequarksandtheother 25%comesfromorbital angularmomentumofthemovingquarks.Thisgives u 1 ; (54) and d 0 : 25 : (55) 22

PAGE 29

From[16] u + d canalsobecalculatedfrom decaymeasurementsandwithQCD correctionstheEllis-Jaesumrulegivesatheoreticalval ueof p1 ( Q 2 =3 GeV 2 )=0 : 165 0 : 016 : (56) ExperimentsdonebytheEuropeanMuonCollaboration(EMC)[ 10]gave p1 =0 : 126 0 : 010( stat: ) 0 : 015( syst: )whichdoesnotagreewiththis.Alaterexperimentbythe E143collaborationatSLACmeasured[16] p1 ( Q 2 =3 GeV 2 )=0 : 133 0 : 010.TheSLAC experimentgivesnalvaluesforthespinsofthequarksof u =0 : 83 0 : 03, d = 0 : 43 0 : 03,and s = 0 : 10 0 : 03.Thisgivesatotalspincontributionfromthequarksof S q =0 : 145 0 : 0045whichmeansonlyabout30%ofthespinoftheprotoncomes from thespinofthequarksandalsothattheseaissignicantlypo larized.Theseresultsarenot expectedbythequarkpartonmodelortherelativisticquark partonmodelandhavebeen thefocusofmuchresearchintomorecomplicatedquarkmodel s.Therehavebeensome successeswiththesemodels,butamodelwhichperfectlyexp lainsthecontributionstothe spinoftheprotonhasnotbeenfoundandcalculatingmoreexa ctexperimentalvaluesfora largerrangeofkinematicsisimportanttohelpwiththecrea tion,testing,andtsofthese models.3DataAnalysisThedatausedwasreceivedwiththeeventsalreadyreconstru ctedandcutsappliedto removedmostofthepioncontaminationwhileleavingasmany electroneventsaspossible. Thesecutsstillleaveatailofthepiondistributionwhichn eedstobecorrectedfor.Thedata wasreceivedasthenumberofcountsbinnedinthevariablesW and Q 2 andwassortedby beamandtargetpolarization,andbytarget.Theexperiment hadatotalof4targets,only3 ofwhichwereuseddirectlyinthisanalysis.Thetopandbott omtargetswerethepolarized targets.TheyarebothAmmonia( NH 3 )inwhichthehydrogenatomshavebeenpolarized. Thereasonforhavingtwotargetswiththesamematerialisth attheabilitytopolarizethe targetdropsasthetargetisexposedtoradiationfromthebe amandmustbeannealed.By 23

PAGE 30

havingtwotargetstheycanbeswitchedwhentheattainablep olarizationofthersttarget dropstoomuchsothetargetsdonothavetobeannealedasofte n.Thethirdtargetwas acarbontargetwhichwasusedtocalculatethedilutionfact or.Thedilutionfactoristhe ratioofscatteringeventsfrompolarizedmaterialtoscatt eringeventsfromallmaterials. Therunnumberrangewasusedtondthetargetandbeampolari zations.Anotherpieceof informationthatwasprovidedwiththedatawastheintegrat edFaradaycupchargewhich isseparatedbybeampolarizationandisnecessarytonormal izethenumberofcountsfor dierentbeamcurrents. Thoughthedatathatthisanalysisstartswithisthenumbero fcountsbinnedinWand Q 2 ,thisisnotwasisactuallymeasuredbythedetector.Thequa ntitieswhichareactually measuredbythedetectoraretheoutgoingenergy E 0 andderectionangle ofthederected electron.Thebeamenergyisanotherexperimentalquantity whichismeasured,though notbythedetector.UsingtheseandtheprotonmassW,and Q 2 canbecalculatedusing equations(22)and(21). ThedataanalysiswasdoneusingRoot.Rootisaprogramandli brarycreatedfor particlephysicsdataanalysis.Rootisextremelyusefulfo rdataanalysisoflargeamounts ofdata.TheprogramitselfincludesaC++scriptandcommand lineinterpreterusedfor preformingthedataanalysis.Alongwiththisithasmanylib rarieswithalargevarietyof commandsusefulfordataanalysis.Italsohasagraphicuser interfacewheretheplotsare displayedandsomechangestotheplotscanbemade. 1 2 3 4 5 6 7 8 9 10 1 1.5 2 2.5 3 0 100 200 300 400 500 600 700 3 10 q2vsww00 Entries 3.12219e+07Mean x 1.945Mean y 2.546 RMS x 0.7782RMS y 0.3953 q2vsww00 Entries 3.12219e+07Mean x 1.945Mean y 2.546 RMS x 0.7782RMS y 0.3953 vs WW Inclusive (ptarg = neg, beam = neg) 2 Q Figure13:Countsforthetoptargetwithbeamandtargetpola rizationnegative.Thex axisis Q 2 ,theyaxisisWandthezaxisisnumberofcounts. 24

PAGE 31

Anexampleofoneoftheplotsoftherawcountsisshowningur e13.Thestatistical uncertaintyonthesecountsis p N andthestatisticaluncertaintyisconsideredtobethe dominantsourceofuncertaintyintheexperiment,sothesys tematicuncertaintyisignored. Fromthenumberofcountsforthedierentpolarizations( N tb )wherethearrowinplace oftrepresentsthetargetpolarizationandthearrowinplac eofbrepresentsthebeam polarization,therawasymmetriesaresimply A raw = N ## ( "" ) ( Fc ) N #" ( "# ) N ## ( "" ) +( Fc ) N #" ( "# ) ; (57) whereFcistheratiooftheFaradaycupcurrentforbeampolar izationparalleltotarget polarizationoveranti-paralleltotargetpolarization.T hearrowsnotinparenthesisarefor onetargetpolarizationandthearrowsinparenthesisarefo rtheother.Theelectromagnetic interactionisnonparityviolating.Thismeanswhenthespi nofboththeelectronandproton areswitched,thecrosssectionisthesameandtheresultsfo rbothtargetpolarizationscan becombinedaftertheasymmetryiscalculated. Thenumberofcountsusedtocalculatetherawasymmetryisdi lutedbyseveralthings. Firstthebeamandtargetmaterialarenotcompletelypolari zed.Thebeampolarization P b =84 : 55wascalculatedusing[17]andtherunnumbersforthedata. Thiswasdoneby assumingthepolarizationwasconstantbetweenmeasuremen tsandweightingtheaverage bythenumberofruns.Thebeampolarizationwasassumedtobe constantbetweenruns becausethemeasurementsweremadewhentherewasreasontob elievethatthebeam polarizationhadchangedanditisassumedthatitwasstable betweenthesechanges.The targetpolarizationwascalculatedusing[18]whichhadtob esortedbytargetandby polarizationdirectionandthenaveragedovertherunrange used.Thesenumbersarethe averagepolarizationforthetargetovertherunperiod.The polarizationofthetargetis measuredregularlythroughouttherunandthetargetisswit chedwhenthepolarization decreasestoacertainvalue. 25

PAGE 32

3.1DilutionFactorThemajorcauseoftheasymmetrybeingdilutedisunpolarize dmaterialsinthebeamline. Thesematerialsincludealuminum"banjowindows",theKapt ontargetcup,thehelium surroundingthetarget,andthenitrogenatomintheammonia molecule.Thesematerials areunpolarizedandparticlesscatteredfromthemdonotcon tributetothenumerator oftheasymmetry,buttheydocontributesignicantlytothe denominator.Thenumber ofcurrentnormalizedcountsforbeamandtargetpolarizati onsparalleliswrittenas n + Beamandtargetpolarizationsanti-parallelarewrittenas n .Thenormalizednumberof countsfromthebackgroundiswrittenas n B andthesecountsareincludedin n + and n Thenormalizednumberofcountsfromallmaterialsduringam moniarunsiswrittenasas n a = n + + n ,andthecurrentnormalizedcountsfromjustthepolarizedt argetmaterials iswrittenas n Ppol .Theundilutedasymmetry A undil is A undil = n + n n + + n n B = A raw f d ; (58) where f d isthedilutionfactorandisequalto f d = n Ppol n A = n A n B n A =1 n B n A : (59) Theonlypolarizedmaterialinthebeamlinearethe3hydroge n( 11 H )ontheammonia. ji X meansanelementXwithiprotons,atomicweightj,andtheref orj-ineutrons.The crosssectionforthepolarizedmaterialwillbekeptsepara teandwillbewrittenas Ppol Forcalculatingthescattingfromthebackground,itwouldb eidealifrunswithanitrogen targetcouldbeused,buttherearedicultieswithnitrogen targets.Instead,acarbon ( 126 C )targetisused.Thenitrogen( 147 N )crosssection( N )canbeapproximatedasthe crosssection( D )of7deuterons( 21 H )(oneprotonandoneneutron)andsimilarlythe carbon( 126 C )crosssection( C )as6deuteronsandtheHelium( 42 He )crosssection( He ) as2deuterons.Thealuminum( 2713 Al )iscomposedof13protonsand14neutrons,but thecrosssectionoftheprotonandneutronwillbeassumedto beapproximatelythesame and = D 2 = P + Neu 2 P Neu isusedasanapproximation,where P isthecross 26

PAGE 33

sectionoftheprotonand Neu isthecrosssectionoftheneutron.Nowthecrosssection ofaluminumis Al 27 andthekapton( 126 C 22 11 H 10 147 N 2 168 O 5 )targetcupcrosssection K 382 .Sincetheammonia( 147 N 11 H 3 )targetmaterialconsistsofoneunpolarized nitrogenand3polarizedprotonsthetotalammoniacrosssec tionis A =14 +3 Ppol Figure14showsthematerialsinthebeamlinefordierentta rgetcongurations.The normalizednumberofcountsfromtheallmaterialinthebeam lineforaspecictarget isproportionaltothecrosssectionforeachmaterialinvol vedmultipliedbythenumberof molesofthatmaterialpercubiccentimetermultipliedbyth elengthofthatmaterialinthe beamline.Forammoniathismeans Figure14:Materialsinthebeamlinefrom[7]. n A / 0A l A A +( L l A ) 0He He + l Al 0Al Al + l K 0K K / [ l A 14 17 A +( L l A ) He + l Al Al + l K K ] + 3 17 l A A Ppol ; (60) 27

PAGE 34

where i isthemassdensityofthematerialiin gm cm 3 0i = i # nucleons where# nucleons is thenumberofnucleonspermoleculeofthatmaterialin # mols cm 3 l i isthelengthofmaterial ithatthebeampassesthrough,andListhelengthoftheheliu mthatthebeampasses throughwithnotargetmaterial.Forcarbonthetotalnormal izednumberofcountsfrom allmaterialinthebeamline( n C )is n C / 0C l C A +( L l C ) 0He He + l Al 0Al Al + l K 0K K / [ l C C +( L l C ) He + l Al Al + l K K ] : (61) Fortheammoniatarget,thenormalizednumberofcountsfrom thebackgroundis n B / [ l A 14 17 A +( L l A ) He + l Al Al + l K K ] ; (62) andthenormalizednumberofcountsfromthepolarizedmater ialsis n Ppol / 3 17 l A A Ppol : (63) Nowthedilutionfactoris f d =1 C n C n A ; (64) where C = l A 14 17 A +( L l A ) He + l Al Al + l K K l C C +( L l C ) He + l Al Al + l K K ; (65) becausethenormalizednumberofcountsforthesedierentm aterialsareproportionalto thecrosssectionwiththesameconstantofproportionality ,sothat n B = Cn c .Thelengths ofthetargetmaterialsotherthan l a andLcanbemeasuredstraightforwardlybyphysical measurements,buttheammoniaisnotonesolidpiece.Itisin theformofgranulesor beadswhichlltheentire1.5cmtargetcup.Thelength l A istheeectivelengthifthe granuleswereconsolidatedintoasolidpieceofmaterialan dtheratio l A 1 : 5 cm iscalledthe packingfraction.Therestofthetargetcupislledwithliq uidhelium.Thedilutionfactor cannowbecomputedusingthisequationandinformationfrom [7]shownintable1.The dilutionfactorforthetoptargetforarangeof Q 2 binscanbeseeningure15.Points 28

PAGE 35

Table1:Constantsforcalculatingthedilutionfactorfrom [7]. PropertyHeliumCarbonAluminumKaptonAmmoniaTopBottom Density( gm cm 3 )0.1452.1932.7001.4300.8660.866 Length(cm)L=2.010.3980.01660.00660.8600.910 Molsofnucleons cm 2 0.2910.8730.04480.00940.7450.788 C----0.7190.743 withuncertaintiesofmorethan0.05arenotshown.Pointswi thlargeuncertaintiesarenot shownatmanypointsthroughoutthisworkbecausethequanti tiesbeingcalculatedhave beencalculatedforotherexperimentsinsimilarkinematic ranges.Thedataproducedin thisworkisonlyusefulforareasinwhichithasasmalluncer taintyandmayimproveupon previousdata.Pointswithlargeruncertaintiesalsomakei tmorediculttoseetrendsin thedatawithsmalleruncertaintiesandsincethesevaluesa restillcalculatedandaresimply notplotted,theycanbeaddedatanytime.Afunctionwasmade forthispurposeandthe maximumuncertaintyplottedcanbechangedeasily. topdilu2 Entries 70919Mean 2.849RMS 0.1438 W 11.522.53 Ratio 0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 topdilu2 Entries 70919Mean 2.849RMS 0.1438 Top Dilution Factor Q^2 = 1.125 topdilu3 Entries 102877Mean 2.665RMS 0.2157 W 11.522.53 Ratio 0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 topdilu3 Entries 102877Mean 2.665RMS 0.2157 Top Dilution Factor Q^2 = 1.406 topdilu4 Entries 131427Mean 2.457RMS 0.3006 W 11.522.53 Ratio 0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 topdilu4 Entries 131427Mean 2.457RMS 0.3006 Top Dilution Factor Q^2 = 1.757 topdilu5 Entries 147981Mean 2.081RMS 0.4423 W 11.522.53 Ratio 0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2 topdilu5 Entries 147981Mean 2.081RMS 0.4423 Top Dilution Factor Q^2 = 2.196 topdilu6 Entries 142300Mean 1.894RMS 0.5177 W 11.522.53 Ratio 0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2 0.22 topdilu6 Entries 142300Mean 1.894RMS 0.5177 Top Dilution Factor Q^2 = 2.745 topdilu7 Entries 100994Mean 1.845RMS 0.4869 W 11.522.53 Ratio 0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2 0.22 0.24 topdilu7 Entries 100994Mean 1.845RMS 0.4869 Top Dilution Factor Q^2 = 3.465 topdilu8 Entries 34314Mean 1.752RMS 0.4155 W 11.522.53 Ratio 0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2 topdilu8 Entries 34314Mean 1.752RMS 0.4155 Top Dilution Factor Q^2 = 4.322 topdilu9 Entries 12716Mean 1.595RMS 0.3237 W 11.522.53 Ratio 0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2 0.22 topdilu9 Entries 12716Mean 1.595RMS 0.3237 Top Dilution Factor Q^2 = 5.358 topdilu10 Entries 3132Mean 1.295RMS 0.1528 W 11.522.53 Ratio 0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2 0.22 topdilu10 Entries 3132Mean 1.295RMS 0.1528 Top Dilution Factor Q^2 = 6.697 Figure15:Dilutionfactorforthetoptargetforarangeof Q 2 binsplottedagainstWfor pointswithanuncertaintyoflessthan0.05. 29

PAGE 36

3.2BackgroundParticleCorrectionsMostofthebackgroundparticlescanbedistinguishedfrome lectronsbyapplyingcutsto thedata,butthedataisstillcontaminatedbyhighenergypi onsmisidentiedaselectrons andelectronsfromelectron-positronpairproductionfrom piondecays.Writingthecounts fromacontaminationas N ## ( #" ) c ,thecorrectedasymmetrycanbewrittenas A corr = ( N ## N ## c ) ( N #" N #" c ) ( N ## N ## c )+( N #" N #" c ) = A raw RA c 1 R ; (66) where R = N c N N c = N ## c + N #" c ,and A c = N ## c + N #" c N c Assaidbefore,themajorityofthepionsareremovedfromthe datausingcuts.The mainwaytoseparatepionsandelectronsinthedetectoristo usetheCherenkovcounter. Whenachargedparticleismovingthroughadielectricmediu mfasterthanthespeedof lightinthatmedium,itcreatesashockwavesimilartohowso methingmovingfasterthan thespeedofsoundcreatesasonicboom.Inamaterialwithani ndexofrefraction R ,the speedoflightis v c = c R andinatimetthephotonsmoveadistance x c = c R t isdened astheratiooftheparticlesvelocitytothespeedoflightc, = v p c ,where v p istheparticle velocity.Fromgure16itcanbeseenthattheangleofthecon eoflightfromthepath obeystherelation cos ( )= 1 R = c v p R ; (67) andtheparticleonlyemitsradiationwhen > 1 R .Bychoosingamaterialwithan appropriateindexofrefraction,particlesofacertainene rgycanbedistinguished.Inthe CLASdetector,perruorobutane( C 4 F 10 )withanindexofrefractionof1.00153isused.The energyoftheparticlewithmass m p is E p = m p c 2 p 1 2 ,Cherenkovradiationisonlyemitted when E p > R q 2 R 1 m p =18 : 1 m p : (68) Foranegativepionwhichhasmass0.1396GeVthisis2.52GeV, butforanelectronwhich hasmass0.000511GeVthisis0.00925GeV.Thismeansthatthe Cherenkovcountercanvery eectivelylteroutpionsfromelectronswhentheenergyof theparticleislessthan2.5GeV. 30

PAGE 37

Figure16:ThedynamicsofCherenkovradiationfrom[8]. TheCherenkovcounterusesphotomultipliertubestodetect thelightfromtheCherenkov radiationandmeasurethenumberofphotoelectronscreated inthephotomultipliertubes. Forthecontaminationcorrections,theanalysisfromasimi larpreviousexperimentin hallbofJLab(calledtheEG1bexperiment)[5]wasused.Figu re17showsanexampleof thespectrumfromtheCherenkovcounter. Thettotheelectronsabove2photoelectronsisthebestapp roximationoftheactual numberofelectrons.Thepionsignalscaledtothedierence betweentheelectrontand signalisthebestapproximationofthenumberofpionsconta minatingtheelectronsignal. ThecutontheCherenkovcounterforenergiesoflessthan3Ge Vis2photoelectronsso thesenumbersaresummedforpointsabove2photoelectronsa ndtheirratioisusedas thestandardcontaminationwhichistheratioofpionstoele ctronsforenergieslessthan 2.5GeV.Forgreaterthan3GeV,theCherenkovcounterisnote ectivefordistinguishing pionsfromelectronsandtheCherenkovcutisnotapplied.To calculatethecontamination inthisregion,theelectronandpiontaresummedovertheen tirespectrumandtheratio iscalledthetotalcontamination.Between2.5and3GeVthec utisstillapplied,butthe eciencydecreasessothecontaminationisbetweenthestan dardandtotalcontamination. 31

PAGE 38

Inthisanalysisthestandardcontaminationisusedandthed ierencebetweenthestandard andtotalcontaminationisaddedtotheuncertaintyforthep ointswithenergiesabove 2.5GeV.Forbothmethodsthe,ratiocanbewrittenas[5] R = e a + b + cp + dp ; (69) where istheangleofderectionoftheparticle,pisthemomentumof theparticle,and a,b,c,anddareconstantswhichcanbefoundin[5]andaredi erentforthestandardand totalcontaminationsandfordierentkinematicranges.Al so,sincethisratioissmall,as istheasymmetryofthecontamination, RA c istakentobezero. Thereisnowaytodirectlydierentiatescatteredelectron sfromelectronscreatedby electron-positronpaircreation.Toestimatethenumberof electronsfromthissource,the numberofpositronsneedstobefound,becauseeachelectron shouldhaveacorresponding positronwiththesamekinematics.Thisiscomplicatedbyth efactthattheacceptanceof thedetectorforparticlesofdierentchargesisdierentd uetothemagneticeldinthe detector.IntheEG1-DVCSexperimenttherewerenotveryman yrunsinwhichthecurrent ofthemagnetwasreversed,socalculationsofthisratiowou ldhavelargeuncertainties,but intheEG1bexperimentthereweremanymorerunswithopposit emagnetcurrents.The positronshaveallofthesamecutsappliedastheelectronse xceptofcoursethecharge, butthepioncontaminationisfarhigher.Thisisremovedina similarmethodtothe pioncorrectionforelectrons.Oncetheuncontaminatedpos itronspectrumisfound,the ratioistakenbetweenthepositronspectrumandtheelectro nspectrumintheopposite toruscurrentnormalizedforbeamcurrents.Thisisusedast hecontaminationduetopair symmetricelectronsintheelectronspectrum.Thiscontami nationalsofollowstheformof equation(69)andtheconstantscanbefoundin[5]. Theasymmetrieswiththepolarizationanddilutionfactort akenintoaccount,using noradiativecorrections,thestandardpionandpairelectr oncorrection,andthetotalpion correctionandpairelectroncorrectionareshowningure1 8.Byplottingtheenergiesfor eachbincalculatedusingWand Q 2 ,showningure19itcanbeseenwhereeachcorrection applies.Thetotalcorrectiondoesnotapplyformostpoints andiscloseto,butnotthe 32

PAGE 39

sameasthestandardcorrectionwhereitapplies.Inthisana lysisthedierencebetweenthe correctedasymmetryfortwocorrectionswasaddedtotheunc ertaintyintheareawhere thetotalcorrectionappliesandthestandardcorrectionwa susedeverywhere. 3.3Calculating g 1 Nowthatthecorrectedasymmetries A k havebeencalculated,theycanbeusedtocalculate thestructurefunction g 1 ( W;Q 2 ).Thestructurefunction g 1 ( W;Q 2 )intermsofthevirtual photonabsorptionasymmetries A 1 and A 2 is[5]and[16] g 1 ( W;Q 2 )= F 1 ( W;Q 2 ) 1+ r 2 ( A 1 + rA 2 ) ; (70) where r = p Q 2 and A k canbewrittenintermsofthevirtualphotonabsorptionasym metriesas A k = D ( A 1 + A 2 ) ; (71) where D = 1 E 0 E 1+ R =(1+2(1+ 1 r 2 )tan 2 ( 2 )) 1 ,and R 0 : 18istheratiooflongitudinal totransversevirtualphotonabsorptioncrosssections.Us ingthese,thestructurefunction intermsof A k is g 1 ( W;Q 2 )= F 1 ( W;Q 2 ) 1+ r 2 ( A k D +( r ) A 2 ) : (72) Thetermdependingon A 2 issmallbecausethe r issmalland A 2 isassumedtobe closetozero[16]. A 2 alsocanbeshowntohaveanupperboundof p R ,andthoughin thekinematicregionofthisexperimentitshouldbemuchsma ller,thiscanbeusedasa verygenerousestimateoftheeect A 2 willhaveonthestructurefunction.Ascanbeseen ingure20thisapproximationfor A 2 alters g 1 signicantly,butassuming A 2 isactually muchsmallerthanthisthestructurefunctionsforbothtarg etsareshowningure21. 4ComparisontoOtherDataandConclusionsThenaldatafor g 1 F 1 canbecomparedtodatafromotherexperiments.ThemostcomparableexperimentisanearlierexperimentatJLabcalledt heEG1bexperiment.This 33

PAGE 40

Table2:Comparisonof Q 2 valuesusedingure22. Experiment Q 2 1( GeV 2 ) Q 2 2 Q 2 3 Q 2 4 Q 2 5 Q 2 6 Q 2 7 Q 2 8 EG1-DVCS 1.1251.4061.7572.1962.7453.4564.3225.358 EG1B 1.21.441.712.052.923.484.164.96 experimentmeasuredawiderrangeofWand Q 2 values,butwithmoreuncertainty.A comparisonofthevalueobtainedbythetwoexperimentsispl ottedingure22.Thisgure showsthatthattheuncertaintyforthevaluescalculatedin thisthesisimproveconsiderably onthepreviousuncertainties. ThedatadoesnotagreeexactlywiththevaluesfromEG1b.One sourceofthisdierence isthatthe Q 2 valuesfortheEG1bdataarenotexactlythesameasforthedat ainthis thesis.Ascanbeseenfromthedatathevalueof g 1 F 1 risesas Q 2 rises.The Q 2 valuesfor thedatafromthisthesisandtheEG1bexperimentarecompare dintable2. Thedatainthisthesisshouldbeusefulformoreprecisecomp utationsofthemoments ofthestructurefunctionandpropertiesoftheprotoningen eral.Inordertocalculatethe momentsofthestructurefunctiontheentirerangeofxfrom0 to1wouldneedtobepart ofthedataortheendsoftherangewouldneedtobeapproximat ed.Unfortunatelythatis beyondthescopeofthisthesisatthistime.References [1]C.W.Leemann,D.R.Douglas,andG.A.Krat.TheContinuo usElectronBeam AcceleratorFacility:CEBAFattheJeersonLaboratory. Ann.Rev.Nucl.Part.Sci. 51:413{450,2001. [2]ThomasJeersonNationalAcceleratorFacilityOceofS cienceEducation.Cebaf center-cavitydisplay. http://education.jlab.org/sitetour/ccentercavity.l. html ,April2011. [3]File:standingwaves.svg. http://commons.wikimedia.org/wiki/File: Standingwaves.svg ,April2010. 34

PAGE 41

[4]File:lineaeracceleratoren.svg-wikimediacommons. http://commons.wikimedia. org/wiki/File:Lineaer_accelerator_en.svg ,February2010. [5]NevzatGuler. SpinStructureOfTheDeuteron .PhDthesis,OldDominionUniversity, December2009. [6]C.D.Keithetal.ApolarizedtargetfortheCLASdetector Nucl.Instrum.Meth. A501:327{339,2003. [7]SuchetaJawalkar,NicholasKvaltine,PeterBosted,and YelenaProk.Calculating lengthbetweenthebanjowindowsandeectivelengthof nh 3 .Technicalreport,EG1DVCS,December2010. [8]File:cherenkov.svg-wikipedia,thefreeencyclopedia http://en.wikipedia.org/ wiki/File:Cherenkov.svg ,March2006. [9]Clasdatabase= > measuremente93m8. http://depni.sinp.msu.ru/cgi-bin/jlab/ msm.cgi?eid=93&mid=8&data=on ,April2011. [10]J.Ashmanetal.Aninvestigationofthespinstructureo ftheprotonindeepinelastic scatteringofpolarizedmuonsonpolarizedprotons. Nucl.Phys. ,B328:1,1989. [11]DavidGriths. IntroductiontoElementaryParticles .Wiley-VCH,2ndedition,2008. [12]FrancisHalzenandAlanMartin. QuarksandLeptons:Anintroductorycoursein modernparticlephysics .JohnWileyandSons,NewYork,USA,1984. [13]RobertG.Fersch. MeasurementofInclusiveProtonDouble-SpinAsymmetriesa nd PolarizedStructureFunctions .PhDthesis,CollegeofWilliamandMary,August2008. [14]E.LeaderandE.Predazzi.AnIntroductiontogaugetheo riesandmodernparticle physics.Vol.1:Electroweakinteractions,thenewparticl esandthepartonmodel. Camb.Monogr.Part.Phys.Nucl.Phys.Cosmol. ,3:1,1996. [15]B.W.FilipponeandXiang-DongJi.Thespinstructureof thenucleon. Adv.Nucl. Phys. ,26:1,2001. 35

PAGE 42

[16]K.Abeetal.Measurementsoftheprotonanddeuteronspi nstructurefunctionsg1 andg2. Phys.Rev. ,D58:112003,1998. [17]Beampolarization-eg1-dvcs-wiki. http://clasweb.jlab.org/rungroups/ eg1-dvcs/wiki/index.php/Beam_Polarization ,March2011. [18]Targettable-eg1-dvcs-wiki. http://clasweb.jlab.org/rungroups/eg1-dvcs/ wiki/index.php/Target_Table ,October2009. 36

PAGE 43

Figure17:ACherenkovspectrumwithnumberofphotoelectro nsdetectedonthexaxisand numberofparticlesontheyaxis.Thereddotsaretheelectro nsignal,thecyandotsarethe tabove2photoelectrons,thebluedotsarethepionsdetect edusingtheelectromagnetic calorimeterandothercuts,andthebrownsquaresarethispi onsignalscaledtothedierence betweentheelectronsignalandthet.[5]. 37

PAGE 44

topaerrCtot2 Entries 3116Mean 2.833RMS 0.1346 W 11.522.53 Asymmetry 0 0.05 0.1 0.15 0.2 0.25 0.3 topaerrCtot2 Entries 3116Mean 2.833RMS 0.1346 topaerr2 Entries 3115Mean 2.833RMS 0.1443 Top Electromagnetic Asymmetry Q^2 = 1.125 topaerrCtot3 Entries 6914Mean 2.697RMS 0.1894 W 11.522.53 Asymmetry 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 topaerrCtot3 Entries 6914Mean 2.697RMS 0.1894 topaerr3 Entries 6913Mean 2.691RMS 0.197 Top Electromagnetic Asymmetry Q^2 = 1.406 topaerrCtot4 Entries 12310Mean 2.508RMS 0.2775 W 11.522.53 Asymmetry 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 topaerrCtot4 Entries 12310Mean 2.508RMS 0.2775 topaerr4 Entries 12309Mean 2.49RMS 0.2809 Top Electromagnetic Asymmetry Q^2 = 1.757 topaerrCtot5 Entries 18954Mean 2.233RMS 0.4368 W 11.522.53 Asymmetry 0 0.1 0.2 0.3 0.4 0.5 0.6 topaerrCtot5 Entries 18954Mean 2.233RMS 0.4368 topaerr5 Entries 18954Mean 2.168RMS 0.4176 Top Electromagnetic Asymmetry Q^2 = 2.196 topaerrCtot6 Entries 20093Mean 2.048RMS 0.522 W 11.522.53 Asymmetry 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 topaerrCtot6 Entries 20093Mean 2.048RMS 0.522 topaerr6 Entries 20093Mean 1.969RMS 0.5017 Top Electromagnetic Asymmetry Q^2 = 2.745 topaerrCtot7 Entries 15440Mean 1.924RMS 0.4521 W 11.522.53 Asymmetry 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 topaerrCtot7 Entries 15440Mean 1.924RMS 0.4521 topaerr7 Entries 15438Mean 1.92RMS 0.465 Top Electromagnetic Asymmetry Q^2 = 3.465 topaerrCtot8 Entries 5987Mean 1.854RMS 0.273 W 11.522.53 Asymmetry 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 topaerrCtot8 Entries 5987Mean 1.854RMS 0.273 topaerr8 Entries 5985Mean 1.883RMS 0.2975 Top Electromagnetic Asymmetry Q^2 = 4.322 topaerrCtot9 Entries 1656Mean 0RMS 0 W 11.522.53 Asymmetry 0 0.2 0.4 0.6 0.8 1 topaerrCtot9 Entries 1656Mean 0RMS 0 topaerr9 Entries 1655Mean 1.925RMS 1.557e-08 Top Electromagnetic Asymmetry Q^2 = 5.358 Figure18:Theasymmetrieswiththepolarizationanddiluti onfactortakenintoaccount areshowninblack.Theasymmetrieswiththepolarization,d ilutionfactor,pairelectron correction,andstandardpioncorrectionareshowninred.T heasymmetrieswiththe polarization,dilutionfactor,pairelectroncorrection, andtotalpioncorrectionareshown inblue.Alloftheseareforthetoptarget. W 11.522.53 Energy (Gev) 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 E2bins2 Entries 8869978Mean 2.808RMS 0.137 Energy of outgoing electron Q^2 = 1.125 W 11.522.53 Energy (Gev) 0 0.5 1 1.5 2 2.5 E2bins3 Entries 1.258287e+07Mean 2.603RMS 0.2025 Energy of outgoing electron Q^2 = 1.406 W 11.522.53 Energy (Gev) 0 0.5 1 1.5 2 2.5 3 3.5 E2bins4 Entries 1.461438e+07Mean 2.364RMS 0.2789 Energy of outgoing electron Q^2 = 1.757 W 11.522.53 Energy (Gev) 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 E2bins5 Entries 1.417955e+07Mean 1.938RMS 0.4284 Energy of outgoing electron Q^2 = 2.196 W 11.522.53 Energy (Gev) 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 E2bins6 Entries 9981004Mean 1.72 RMS 0.4803 Energy of outgoing electron Q^2 = 2.745 W 11.522.53 Energy (Gev) 0 0.5 1 1.5 2 2.5 3 3.5 4 E2bins7 Entries 5019617Mean 1.678RMS 0.4531 Energy of outgoing electron Q^2 = 3.465 W 11.522.53 Energy (Gev) 0 0.5 1 1.5 2 2.5 3 3.5 E2bins8 Entries 1321555Mean 1.605RMS 0.3999 Energy of outgoing electron Q^2 = 4.322 W 11.522.53 Energy (Gev) 0 0.5 1 1.5 2 2.5 3 E2bins9 Entries 289268Mean 1.505RMS 0.3286 Energy of outgoing electron Q^2 = 5.358 Figure19:Theenergyofthedetectedelectronforbinswithc ounts. 38

PAGE 45

topgerrCstanA22 Entries 6859Mean 2.839RMS 0.1455 W 11.522.53 g1/F1 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 topgerrCstanA22 Entries 6859Mean 2.839RMS 0.1455 topgerrCstan2 Entries 3115Mean 2.838RMS 0.1464 Q^2 = 1.125 topgerrCstanA23 Entries 14221 Mean 2.69RMS 0.2004 W 11.522.53 g1/F1 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 topgerrCstanA23 Entries 14221 Mean 2.69RMS 0.2004 topgerrCstan3 Entries 6832Mean 2.693RMS 0.2 Q^2 = 1.406 topgerrCstanA24 Entries 22528Mean 2.483RMS 0.2863 W 11.522.53 g1/F1 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 topgerrCstanA24 Entries 22528Mean 2.483RMS 0.2863 topgerrCstan4 Entries 11186Mean 2.489RMS 0.2857 Q^2 = 1.757 topgerrCstanA25 Entries 29708Mean 2.178RMS 0.4034 W 11.522.53 g1/F1 0 0.1 0.2 0.3 0.4 0.5 topgerrCstanA25 Entries 29708Mean 2.178RMS 0.4034 topgerrCstan5 Entries 15264Mean 2.186RMS 0.4043 Q^2 = 2.196 topgerrCstanA26 Entries 30744Mean 1.934RMS 0.5074 W 11.522.53 g1/F1 0 0.1 0.2 0.3 0.4 0.5 0.6 topgerrCstanA26 Entries 30744Mean 1.934RMS 0.5074 topgerrCstan6 Entries 16583Mean 1.968RMS 0.5016 Q^2 = 2.745 topgerrCstanA27 Entries 22318Mean 1.899RMS 0.4759 W 11.522.53 g1/F1 0 0.1 0.2 0.3 0.4 0.5 0.6 topgerrCstanA27 Entries 22318Mean 1.899RMS 0.4759 topgerrCstan7 Entries 12864Mean 1.93RMS 0.4683 Q^2 = 3.465 topgerrCstanA28 Entries 8858Mean 1.88RMS 0.299 W 11.522.53 g1/F1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 topgerrCstanA28 Entries 8858Mean 1.88RMS 0.299 topgerrCstan8 Entries 5334Mean 1.885RMS 0.298 Q^2 = 4.322 topgerrCstanA29 Entries 2621Mean 1.769RMS 0.09814 W 11.522.53 g1/F1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 topgerrCstanA29 Entries 2621Mean 1.769RMS 0.09814 topgerrCstan9 Entries 1627Mean 1.768RMS 0.09756 Q^2 = 5.358 Figure20: g 1 forthetoptargetwith A 2 =0inblackand A 2 = p R inblue. topgerrCstan2 Entries 3115Mean 2.838RMS 0.1464 W 11.522.53 g1/F1 0 0.05 0.1 0.15 0.2 0.25 topgerrCstan2 Entries 3115Mean 2.838RMS 0.1464 Q^2 = 1.125 topgerrCstan3 Entries 6832Mean 2.693RMS 0.2 W 11.522.53 g1/F1 0 0.05 0.1 0.15 0.2 0.25 0.3 topgerrCstan3 Entries 6832Mean 2.693RMS 0.2 Q^2 = 1.406 topgerrCstan4 Entries 11186Mean 2.489RMS 0.2857 W 11.522.53 g1/F1 0 0.05 0.1 0.15 0.2 0.25 0.3 topgerrCstan4 Entries 11186Mean 2.489RMS 0.2857 Q^2 = 1.757 topgerrCstan5 Entries 15264Mean 2.186RMS 0.4043 W 11.522.53 g1/F1 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 topgerrCstan5 Entries 15264Mean 2.186RMS 0.4043 Q^2 = 2.196 topgerrCstan6 Entries 16583Mean 1.968RMS 0.5016 W 11.522.53 g1/F1 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 topgerrCstan6 Entries 16583Mean 1.968RMS 0.5016 Q^2 = 2.745 topgerrCstan7 Entries 12864Mean 1.93RMS 0.4683 W 11.522.53 g1/F1 0 0.1 0.2 0.3 0.4 0.5 topgerrCstan7 Entries 12864Mean 1.93RMS 0.4683 Q^2 = 3.465 topgerrCstan8 Entries 5334Mean 1.885RMS 0.298 W 11.522.53 g1/F1 0 0.1 0.2 0.3 0.4 0.5 topgerrCstan8 Entries 5334Mean 1.885RMS 0.298 Q^2 = 4.322 topgerrCstan9 Entries 1627Mean 1.768RMS 0.09756 W 11.522.53 g1/F1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 topgerrCstan9 Entries 1627Mean 1.768RMS 0.09756 Q^2 = 5.358 Figure21: g 1 with A 2 =0forthetoptargetinblackandforthebottomtargetinred. 39

PAGE 46

topgerrCstan2 Entries 3115Mean 2.838RMS 0.1464 W 11.522.53 g1/F1 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 topgerrCstan2 Entries 3115Mean 2.838RMS 0.1464 Q^2 1 topgerrCstan3 Entries 6831Mean 2.692RMS 0.2009 W 11.522.53 g1/F1 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 topgerrCstan3 Entries 6831Mean 2.692RMS 0.2009 Q^2 2 topgerrCstan4 Entries 11185Mean 2.466RMS 0.2986 W 11.522.53 g1/F1 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 topgerrCstan4 Entries 11185Mean 2.466RMS 0.2986 Q^2 3 topgerrCstan5 Entries 15261Mean 2.115RMS 0.4436 W 11.522.53 g1/F1 0 0.1 0.2 0.3 0.4 0.5 topgerrCstan5 Entries 15261Mean 2.115RMS 0.4436 Q^2 4 topgerrCstan6 Entries 16582Mean 2 RMS 0.5185 W 11.522.53 g1/F1 0 0.1 0.2 0.3 0.4 0.5 0.6 topgerrCstan6 Entries 16582Mean 2 RMS 0.5185 Q^2 5 topgerrCstan7 Entries 12864Mean 1.93RMS 0.4683 W 11.522.53 g1/F1 0 0.1 0.2 0.3 0.4 0.5 0.6 topgerrCstan7 Entries 12864Mean 1.93RMS 0.4683 Q^2 6 topgerrCstan8 Entries 5326Mean 1.775RMS 0.4009 W 11.522.53 g1/F1 0 0.1 0.2 0.3 0.4 0.5 0.6 topgerrCstan8 Entries 5326Mean 1.775RMS 0.4009 Q^2 7 topgerrCstan9 Entries 1611Mean 1.617RMS 0.3195 W 11.522.53 g1/F1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 topgerrCstan9 Entries 1611Mean 1.617RMS 0.3195 Q^2 8 Figure22: g 1 withthetoptargetinblackandforthebottomtargetinred,a nddatafrom EG1bwithapproximatelythesame Q 2 valueplottedingreen.ThevaluesfortheEG1b experimentarefrom[9]. 40


ERROR LOADING HTML FROM SOURCE (http://ncf.sobek.ufl.edu//design/skins/UFDC/html/footer_item.html)