ERROR LOADING HTML FROM SOURCE (http://ncf.sobek.ufl.edu//design/skins/UFDC/html/header_item.html)

Simulating Electromagnetic Wave Propagation using Multi-Scale Time-Domain Methods and Iterative Algorithms

Permanent Link: http://ncf.sobek.ufl.edu/NCFE004381/00001

Material Information

Title: Simulating Electromagnetic Wave Propagation using Multi-Scale Time-Domain Methods and Iterative Algorithms
Physical Description: Book
Language: English
Creator: Keys, Kerry
Publisher: New College of Florida
Place of Publication: Sarasota, Fla.
Creation Date: 2011
Publication Date: 2011

Subjects

Subjects / Keywords: Wavelet
Simulation
Maxwell
Krylov
Lanczos
Genre: bibliography   ( marcgt )
theses   ( marcgt )
government publication (state, provincial, terriorial, dependent)   ( marcgt )
born-digital   ( sobekcm )
Electronic Thesis or Dissertation

Notes

Abstract: Techniques which improve the efficiency of numerical simulations used to evaluate partial differential equations are especially important in creating realistic models of physical phenomena. In this thesis I examine the implementation of a wavelet basis in simulating the propagation of electromagnetic waves through a dielectric medium. I review the properties of a wavelet basis and its advantages over the traditional Fourier basis. I then explain the general method of projecting functions and operators into a given wavelet basis, and follow the construction of a Hamiltonian operator which defines the behavior of electromagnetic fields in a given system. This material supports the example propagation of an electromagnetic wave through a dielectric material using a variation of an iterative computational method known as the Lanczos Algorithm.
Statement of Responsibility: by Kerry Keys
Thesis: Thesis (B.A.) -- New College of Florida, 2011
Electronic Access: RESTRICTED TO NCF STUDENTS, STAFF, FACULTY, AND ON-CAMPUS USE
Bibliography: Includes bibliographical references.
Source of Description: This bibliographic record is available under the Creative Commons CC0 public domain dedication. The New College of Florida, as creator of this bibliographic record, has waived all rights to it worldwide under copyright law, including all related and neighboring rights, to the extent allowed by law.
Local: Faculty Sponsor: Ruppeiner, George

Record Information

Source Institution: New College of Florida
Holding Location: New College of Florida
Rights Management: Applicable rights reserved.
Classification: local - S.T. 2011 K4
System ID: NCFE004381:00001

Permanent Link: http://ncf.sobek.ufl.edu/NCFE004381/00001

Material Information

Title: Simulating Electromagnetic Wave Propagation using Multi-Scale Time-Domain Methods and Iterative Algorithms
Physical Description: Book
Language: English
Creator: Keys, Kerry
Publisher: New College of Florida
Place of Publication: Sarasota, Fla.
Creation Date: 2011
Publication Date: 2011

Subjects

Subjects / Keywords: Wavelet
Simulation
Maxwell
Krylov
Lanczos
Genre: bibliography   ( marcgt )
theses   ( marcgt )
government publication (state, provincial, terriorial, dependent)   ( marcgt )
born-digital   ( sobekcm )
Electronic Thesis or Dissertation

Notes

Abstract: Techniques which improve the efficiency of numerical simulations used to evaluate partial differential equations are especially important in creating realistic models of physical phenomena. In this thesis I examine the implementation of a wavelet basis in simulating the propagation of electromagnetic waves through a dielectric medium. I review the properties of a wavelet basis and its advantages over the traditional Fourier basis. I then explain the general method of projecting functions and operators into a given wavelet basis, and follow the construction of a Hamiltonian operator which defines the behavior of electromagnetic fields in a given system. This material supports the example propagation of an electromagnetic wave through a dielectric material using a variation of an iterative computational method known as the Lanczos Algorithm.
Statement of Responsibility: by Kerry Keys
Thesis: Thesis (B.A.) -- New College of Florida, 2011
Electronic Access: RESTRICTED TO NCF STUDENTS, STAFF, FACULTY, AND ON-CAMPUS USE
Bibliography: Includes bibliographical references.
Source of Description: This bibliographic record is available under the Creative Commons CC0 public domain dedication. The New College of Florida, as creator of this bibliographic record, has waived all rights to it worldwide under copyright law, including all related and neighboring rights, to the extent allowed by law.
Local: Faculty Sponsor: Ruppeiner, George

Record Information

Source Institution: New College of Florida
Holding Location: New College of Florida
Rights Management: Applicable rights reserved.
Classification: local - S.T. 2011 K4
System ID: NCFE004381:00001


This item is only available as the following downloads:


Full Text

PAGE 1

SIMULATINGELECTROMAGNETICWAVEPROPAGATIONUSINGMULTI-SCALE TIME-DOMAINMETHODSANDITERATIVEALGORITHMS BY KERRYKEYS AThesis SubmittedtotheDivisionofNaturalSciences NewCollegeofFlorida inpartialfulllmentoftherequirementsforthedegree BachelorofArts UnderthesponsorshipofGeorgeRuppeiner Sarasota,Florida May,2011

PAGE 2

Contents 1Introduction 1 1.1GoalsofNumericalSimulation.............................1 1.2HistoryandApplicationofFinite-DierenceTime-DomainMethods.........2 2Wavelets 4 2.1ABriefOverviewofFourierAnalysis..........................4 2.2RepresentingFunctionswithaMultiresolutionBasis..................7 2.3WaveletsasaFiner-scaleCompaniontoScalingFunctions..............9 2.4FamiliesofWavelets...................................12 2.5ScalingCoecients...................................15 3RepresentingFunctionsandDerivativeOperatorswithaWaveletBasis20 3.1ProjectingFunctionsintoaWaveletBasis.......................20 3.2ContinuousandDiscreteWaveletMoments......................23 3.3ApproximatingProjectionCoecientsusingNumericalQuadrature..........25 3.4Finite-DierenceDerivativeOperators.........................26 3.5ProjectingDerivativeOperatorsintoWaveletSpace..................29 4Maxwell'sEquationsinaSchrodinger-likeForm31 4.1Maxwell'sEquations...................................31 4.2ConstructingaHamiltonianOperator..........................32 i

PAGE 3

5IterativeAlgorithms34 5.1PowerIteration.....................................35 5.2KrylovSubspaceTechniques..............................37 5.3TheLanczosAlgorithm.................................38 6ExampleSimulation40 7Conclusion 45 ASizeRequirementonScalingCoecients46 ii

PAGE 4

Abstract SIMULATINGELECTROMAGNETICWAVEPROPAGATIONUSINGMULTI-SCALE TIME-DOMAINMETHODSANDITERATIVEALGORITHMS KerryKeys NewCollegeofFlorida,2011 Techniqueswhichimprovetheeciencyofnumericalsimulationsusedtoevaluatepartialdierential equationsareespeciallyimportantincreatingrealisticmodelsofphysicalphenomena.Inthisthesis Iexaminetheimplementationofawaveletbasisinsimulatingthepropagationofelectromagnetic wavesthroughadielectricmedium.Ireviewthepropertiesofawaveletbasisanditsadvantages overthetraditionalFourierbasis.Ithenexplainthegeneralmethodofprojectingfunctionsand operatorsintoagivenwaveletbasis,andfollowtheconstructionofaHamiltonianoperatorwhich denesthebehaviorofelectromagneticeldsinagivensystem.Thismaterialsupportstheexample propagationofanelectromagneticwavethroughadielectricmaterialusingavariationofaniterative computationalmethodknownastheLanczosAlgorithm. SponsoredbyGeorgeRuppeiner NewCollegeofFloridaDivisionofNaturalSciences

PAGE 5

Chapter1 Introduction 1.1GoalsofNumericalSimulation AnalyticsolutionstoMaxwell'sequationsaregenerallylimitedtoproblemsinvolvingspecialcases ofsymmetry,sosolving'real-world'problemsincludingthosethatinvolveasymmetricorirregular materialgeometriesnecessitatesnumericalsimulation.Developingnewnumericaltechniquesallows ustoworkonavarietyofproblemsmoreecientlyandtoincreasetheclassofproblemswhich aretractableusingavailablehardwareresources.However,betternumericalmodelsaren'teasyto comeby-currentchallengesincludedevelopingmodelsthatcanpropagateelectromagneticwaves throughlossymedia,acrossdiscontinuousdielectricfunctionsaswhenwemovefromonemedium toanother,andinthepresenceofcurrentandchargesources. WecanbegintoaddresstheseissuesbyextendingthepopularFinite-DierenceTime-Domain FDTDmethodtousemulti-scalebasisfunctionsthatis,functionswhichcanberepresentedatone time-orspace-scaleasalinearcombinationofthesamebasisfunctionsatanerscaleandsimulating thepropagationofelectromagneticwavesusingavariationofaniterativecomputationalmethod knownastheLanczosAlgorithm.Byimprovinguponthesemethodswecanhopetousereadilyavailablecomputationalresourcestomodeldemandingproblemslikethescatteringandabsorption 1

PAGE 6

oflightbymetalnanoparticles.Doingsomayenableresearcherstobetterunderstandandpredict expectedvaluesforsurfaceplasmoneectsandRamanSpectroscopy,anditmaybeaboonto nanophotonicsresearchingeneral[1]. 1.2HistoryandApplicationofFinite-DierenceTime-Domain Methods TheFinite-DierenceTime-DomainFDTDmethodwaslargelymotivatedbyanddevelopedon behalfofcold-wareramilitaryconcerns.Importantapplicationsincludeddevelopingstealthbombers, improvingmissileradar-guidancesystems,andmodellinghowtheelectromagneticpulseEMPfrom anuclearbombaectselectroniccomponents[2].Computationalmodellingwasadvantageousin theseprojectsas,forexample,simulatinghowanEMPaectselectricalcomponentsallowedmilitary plannerstooutlinehowanuclearattackmightaectelectricalsystemsinanattackcarriedout eitherbyoragainsttheUnitedStates,whileengineerswereabletodesignEMP-tolerantelectronics systemsforcriticalapplications.Inthecaseoftheradar-guidancesystems,FDTDhelpedmodelthe slightinuenceofthemissilenoseontheelectromagneticwavesenroutetothemissile'sinternally housedguidancesystems.Bymodellingtheseinteractionsbeforemissilefabrication,manufacturers couldprogramtheguidancesystemtotakeintoaccountthedeectionofthewavesbythenosein ordertomoreaccuratelyndtheirtargetwhilein-ight. FDTDhasbecomeincreasinglyimportantincircuitdesign,asittakesintoaccountonlythe electricandmagneticeldswhensimulatinghowacircuitfunctions.Asitdoesnotneedtoconsider relationsbetweenvoltage,current,andresistance,theFDTDmethodcanbeespeciallyusefulwhen modellingnonlinearactivedevicessuchasdiodes,transistors,orlogicgates[2].FDTDhasalso provenindispensableasthedesignofcircuitsinvolvesever-increasingoperationspeedsanddecreasing chipsize,leadingtocomplicationsinvolvingelectromagneticwavecouplingbetweensignalpaths, radiation,andground-currentartifacts[2].Inadditiontohavingarangeofapplicationsincircuit 2

PAGE 7

design,FDTDalsoperformsaccurately:computedcircuitquantities"typicallyagreewithtextbook valuesontheorderof1%orbetter". AlsoofmajorimportanceistheapplicationofFDTDmethodstoproblemsinnonlinearoptics. Otherattemptstomodelnonlinearopticssometimesincludea"nonphysicalscalarcarrier-envelope function":here,FDTDshowsitsstrengthbysimplypluggingthroughalargenumberofcomputations for E and B ,doingawaywiththenonphysicalsimplication[2].ThuswecanuseFDTDtomodel thevariationofamaterial'sindexofrefractionwithfrequencyatlowopticalpowerlevelslinear dispersionaswellasthevariationofthefrequency-dependentrefractiveindexwithopticalpower nonlineardispersion.TheapplicationofFDTDtomodellingnonlinearcomponentslendsitselfto designingall-opticalswitchingcircuits,andthusitmayeventuallyplayanimportantroleindesigning opticalcomputers. FDTDhasalsofounduseindesigningphotonicband-gapmicrocavitylasersandinapplications wherethepropagationandabsorptionofE/Mwavesthroughamediumbecomeoverlycomplicated. Foranexampleofthelatter,FDTDhasbeenusedtomodelhowcell-phoneradiationisabsorbed byboneandtissueinpeople'sheads,[2]andscaleswelltoothercongurationsofinhomogeneous media. 3

PAGE 8

Chapter2 Wavelets 2.1ABriefOverviewofFourierAnalysis Ofthealready-establishedmethodsusedtomodeltime-varyingelectromagneticeldproblems,the Finite-DierenceTime-DomainFDTDmethodhasseenthemostwidespreaduseinbothscientic andengineeringcircles.Ingeneral,waveletsplayananalogousroleinMulti-ScaleTime-Domain methodsastheroleFourieranalysisplaysinFDTDmethods,soitishelpfultounderstandthe simplercaserstFourieranalysistohaveanideaofwherewe'reheaded.Thebasicgoalof Fourieranalysissimilarlyforwaveletsistorepresentphysicalphenomenaasaweightedsumof basisfunctions.Thatis,givensomefunctionoftime[orspace], f x ,weexpresstheunderlying informationasasumoffunctionsinthefrequency[orwavenumber]domain. InFourierAnalysis,werepresentanarbitraryfunction, f x ,asasumofsineandcosinebasis functions: f x = a 0 2 + 1 X n =1 [ a n cos nx + b n sin nx ] .1 4

PAGE 9

wherethecoecients a n b n aredeterminedby: a n = 1 Z 2 0 f x cos nx d x; .2a b n = 1 Z 2 0 f x sin nx d x: .2b Ifwecanndasuitablealternatebasisandcoecients,thenwecangeneralizetheaboveequations intoaform f = P n N c n f n Onereasontosearchforanalternativebasisisthepossibilityofndingbasisfunctionswhichare simultaneouslylocalizedintime[orspace]andfrequency[wavenumber].TheFourierbasisfunctions arenotlocalizedatallinthetimedomainthatis,sineandcosinewavesaredenedforalltimes f
PAGE 10

.[3] Assuch,manysuperimposedsineorcosinewavesarerequiredtoaccuratelyrepresentfunctions whichdonotmaintaintheirbehavioroverlongperiodssay,forexample,apianonoteplayedfora veryshortduration.Forsuchapplicationsabasiswhichislocalizedinboththetime[space]and frequency[wavenumber]domainsprovidesasparserrepresentationofthedesiredfunctionsandthus requirelessstorageandprocessingforsimilarresults. Manywaveletsaredenedtohavecompactsupport{thatis,theyareidenticallyzerooutsidea closed,boundeddomaineitherintimeorspace,thelengthofwhichisknownasthesupportlength ofthewavelet.Assuch,theyaresomewhatlocalizedintime[space]andthusarewell-suitedfor modellingthebehavioroffunctionswhichvarysharplyoverashortspan.Suchjumpsoccurfor exampleinthesimulatedtransmissionofanelectromagneticwaveasitcrossesaboundaryfromone dielectricmaterialtoanother. 6

PAGE 11

2.2RepresentingFunctionswithaMultiresolutionBasis Inpart,FDTDhasbeensosuccessfulbecauseitssimplicityallowsnumericalmodelerstoscaleits usetoavarietyofgeometriesbysimplyreningthespatialscaleatwhichsolutionstotheeld equationsarecalculated.Initstraditionalframework,however,FDTDusesauniformspatialgrid. Thismeansthatateveryspatialpointinthesimulationthegridspacingmustbeassmallasis requiredforaccuracyatthepartofthemodelwhichismostsensitivetochangesinthegridsize. ThusitiscommoninFDTDthatonesensitivedomainofanumericalmodelwillincreasethespatial gridresolutionoverlargeswathsofspacewhichwouldotherwisesubmittoresolutionatacoarser scale. Increasingtheresolutionoftheproblemgridlikewiseincreasesthecomputationalcomplexityof asimulation,sowewouldbebetteroifwecoulduseamethodwhichemploysacoarserspatial gridinareaswherethedielectricfunctiondoesn'tvarysignicantly,usinganerscaleonlywhereit isrequired.Thisisthebasicpremiseofmultiscaleormultiresolutiontimedomaintechniques:we wanttoexpressafunctionatcoarserscalesasalinearcombinationofthesamefunctionprojected intoanerscalespace.Weaccomplishthisbyswitchingourbasisfunctionsfromthefamiliar sine and cosine tofunctionswhichobeyrelationsbetweencoarserandnerscales: j x = X k c k j +1 x )]TJ/F11 9.9626 Tf 9.963 0 Td [(k : M1 M1tellsusthatbycombiningthener-scalebasisfunctionsastheyaretranslatedalongthexaxisinincrementsof k ,wecanrecoverthesamebasisfunctionatthelargerscale.Notethat incrementingjby1increasesthegridresolutionbydoublingthenumberofwaveletsrequiredtospan thesameamountofspace. Thefunction x iscalledthescalingfunction,anditconstitutesthebasicbuildingblockof amultiresolutionbasis.Section2.4describesseveralscalingfunctions,althoughthesimplestisthe scalingfunctionfortheHaarwaveletbasis: 7

PAGE 12

[4]. Thescalingcoecients, c k ,describehowtotranslatethescalingfunctionbetweencoarserandner scales.Infact,thescalingfunctionisitselfuniquelydeterminedbytheseweights. Sincescalingfunctionsconstituteacompletebasisfor L 2 ,[5]wecanrepresentanyarbitrary square-integrablefunctionintermsof x : f x = X j;k j;k j;k x .3 f Notationalconvention g : j;k x =2 j 2 j x )]TJ/F11 9.9626 Tf 9.963 0 Td [(k wheretheprojectioncoecients, j;k ,give j;k x theproperweightatposition 2 j x )]TJ/F11 9.9626 Tf 7.924 0 Td [(k torepresent fx. 8

PAGE 13

2.3WaveletsasaFiner-scaleCompaniontoScalingFunctions Whilewecanrepresentanysquare-integrablefunctionusinganinnitecombinationofweighted scalingfunctions,therealstrengthofwaveletbasesresultsfrombeingabletodescribethe dierence betweenthescalingfunctionsatcoarserandnerscalesintermsofaseparatefunction, x in somecasesthisfunctionisreferredtoasthe"motherwavelet"andthescalingfunctioniscalledthe "fatherwavelet"{hereIwilladopttheconventionofsimplynaming"wavelets"thefunctionswhich spanthedierencebetweenadjacentscalesofthescalingfunction. Thewaveletbasisthenallowsustorelatevaluesgeneratedbyanersamplingofaparticular areainaproblemdomaintothevaluesgeneratedgivenacoarsersamplingofthewholedomain. Thiscanbeespeciallyhelpfulinproblemswhereinformationismoredenseincertain,well-dened areas,asintherepresentationofachirpfunction: 9

PAGE 14

TheHaarscalingfunctionandwaveletsatdierentscales: 10

PAGE 15

[6] Waveletsalsoobeyamulti-scalerelationsimilartoM1: j x = X k d k j +1 x )]TJ/F11 9.9626 Tf 9.963 0 Td [(k : M2 wherethe d k coecientsdeneaconstructionwhichisorthogonaltothescalingfunction,whichat thesametimespansthedierenceindetailcoveredbythescalingfunctionbetweenadjacentscales. Combiningwaveletsandscalingfunctionsallowsustorepresentagivenfunctionasasumofthe two: f x = X k j =0 ;k j =0 ;k x + X j;k j;k j;k x .4 Equations.3and.4bothclaimtorepresentthefunctionfx:eithergivesanexactrepresentationinthelimit j !1 Thedevelopmentofarepresentationintermsofamultiresolutionbasisasoutlinedaboveis particularlyimportant,soI'llemphasizethesepoints:Thedeningpropertyofamultiresolutionbasis isthecharacterizationofthebasisfunctionsbyformulaewhichallowustowritetheexpansionof aphysicalfunctionasalinearcombinationofthesamebasisfunctionsatadierentscale.Using 11

PAGE 16

aseparatefunctiontorepresentthedierencesbetweenonescaleandanothermeansthatwecan computevaluesforamodelatanescaleandthenonlystorethevalueswhichgivethedierence betweenthenestscaleandtheinformationatacoarserscale.Thispropertyiswhatallowsusto partitionthedomainofasimulationandreservethener-scaleapproximationsforthemostsensitive areas.This,inturn,allowsforsimulationswhichavoidthecomputationalcostsassociatedwith calculatingne-scaleapproximationsovertheirentiredomain. 2.4FamiliesofWavelets Thecentralcharacteristicofanymultiresolutionbasisisthatwecanwritearepresentationofa functionatagivenscaleasalinearcombinationofitsrepresentationatnerscales.However,since thereareinnitelymanybasisfunctionswhichsatisfythissimplerequirement,choosingawell-suited basisforaparticularprobleminvolvesunderstandinghowotherpropertiesofpossiblebasisfunctions inuenceissueslikethepresenceofvisualartifactsinwavelet-basedimageprocessing[7],orthe rateofconvergenceofacommonalgorithmusedtoconstructthescalingfunctionfromthescaling coecients[8]. Historically,AlfredHaar'seortscirca1909todescribethespaceofsquare-integrablefunctionsledhimtodevelopasimple'step-function'basiswhichwasthersttoobeythemulti-scale relationswhichcharacterizeallwaveletsandscalingfunctions[9].WhiletheHaarwaveletissimple initsconstruction,isorthonormalandhascompactsupport,thewaveletandscalingfunctionsare discontinuous,whichmakesthemapoorchoiceforrepresentingcontinuousfunctions. ThenextstepinwavelettheorycamewithIngridDaubechies'sdevelopmentofcompactsupport orthonormalwaveletswithvariableregularityinthelate1980's.TheDaubechiesWaveletsareafamily oforthonormalwaveletswhoseregularityandsupportlengthcorrespondtothenumberofconditions whichdenethescalingcoecientsusedtoconstructthescalingfunctionandwavelet.Thesupport lengthofthewaveletandscalingfunctionincreaseswiththenumberofscalingcoecients,sothat thesupportlengthofDaubechieswaveletsisonelessthanthenumberofconditionsimposedonthe 12

PAGE 17

basisthatis,aDaubechieswaveletwithLscalingcoecientswillhavesupportlength=L-1.The numberof vanishingmoments forthewaveletalsoincreaseswiththenumberofconditionsLthat denethescalingcoecients.Thepresenceofvanishingmomentsforthewaveletimpliesanincrease intheabilitytoexactlyrepresentpolynomialfunctionsintermsofthescalingfunctionbasis,andso higher-orderDaubechieswaveletscanbeusedtomoreaccuratelyrepresentirregularfunctionsatthe costofasmallincreaseinthecomputationalresourcesrequiredtocomputethescalingfunctionand wavelet,aswellasaslightincreasesinstoragerequirementsforapplications. [10] [11] 13

PAGE 18

[12] Otherwaveletsdevelopedsincethe1980'shavefoundspecialnichesbyreducingtheasymmetry ofthebasiswithapplicationsinimageprocessingorbyimposingconditionsforvanishingmoments inthescalingfunctionbasisaswellallowingprojectioncoecientstobeapproximatedbysampling fxforcertainvaluesofx,[7]greatlysimplifyingtheimplementationofthesebasisfunctionsin applications. SymmletL=6ScalingFunctionandWavelet.Thesymmletwaveletsandscalingfunctionsareless asymmetricthanthosebelongingtootherwaveletfamilies.[13] Stillotherwaveletsmaybechosenwhichhaveexplicitfunctiondescriptions,simplifyingtheirexpressionandimplementation. 14

PAGE 19

Theabilitytoconstructbiorthogonalwaveletbasescanfurthercomplicateachoiceofbasis.That is,afunctionbasisforwhichwehavetwosetsofwaveletsandtwosetsofscalingfunctions,each satisfying: f x = X k ~ j k j x )]TJ/F11 9.9626 Tf 9.963 0 Td [(k + X k ~ j k j x )]TJ/F11 9.9626 Tf 9.962 0 Td [(k ; .5a = X k j k ~ j x )]TJ/F11 9.9626 Tf 9.963 0 Td [(k + X k j k ~ j x )]TJ/F11 9.9626 Tf 9.962 0 Td [(k ; .5b wheretheprojectioncoecientsaregivenby: j;k = j;k = ; .6a ~ j;k = ~ j;k = ; .6b enablesthechoiceofbiorthogonalbaseswhicheachsatisfydesirableconditionswhichnosingle orthonormalbasiscansatisfyonitsown[7].Forexample,biorthogonalwaveletbasesareoftenused inimageprocessingtosignicantlycompressimageswhileminimizingvisualartifacts{theformer goalisachievedthroughtheuseofwaveletswithasignicantnumberofvanishingmomentswhile theuseofacomplementarylessasymmetricwaveletbasishelpsminimizethepresenceofartifacts. Althoughthebiorthogonalwaveletbasisismorecomplicatedtoimplementinthiscase,itlendsitself tosuchapplicationswherethedesiredoutcomerequiresmutuallyexclusivewaveletpropertiese.g. vanishingmomentsandsymmetry. 2.5ScalingCoecients I'vedescribedsomepropertiesofwaveletsingeneral,althoughtherearemanydierentfunctions whichsatisfythebasicrequirementM1,M2thattranslationsanddilationsofawaveletcanbe expressedintermsofthesamewaveletatanerscale.However,inmostcaseswecannotexplicitly describewaveletsasaniteproductofpolynomials.Instead,weoutlinethepropertiesdesiredfor 15

PAGE 20

ourbasisandthentranslatethesepropertiesintoconstraintsonthescalingcoecientsgivenbythe multi-scalerelationsM1andM2. Forexample,wecanconsidertheDaubechieswaveletwithL=4scalingcoecients.Ifwetake j=0tobeourstartingcoarsestresolutionthentheformulaeforthescalingfunctionandwavelet canbeexpressedintermsofthemulti-scalerelationsM1andM2: x = L )]TJ/F7 6.9738 Tf 6.227 0 Td [(1 X k c k x )]TJ/F11 9.9626 Tf 9.962 0 Td [(k ; .7 x = L )]TJ/F7 6.9738 Tf 6.227 0 Td [(1 X k d k x )]TJ/F11 9.9626 Tf 9.963 0 Td [(k : .8 Toobtainaninitialrepresentationofthescalingfunctionandwaveletweonlyneedtodenethe scalingcoecientsckanddk.InthecaseoftheDaubechiesL=4scalingfunctionandwavelet, weexpresstheorthogonalityconditionbyrequiring[14]: d 0 = c 3 ;d 1 = )]TJ/F11 9.9626 Tf 7.749 0 Td [(c 2 ; d 2 = c 1 ;d 3 = )]TJ/F11 9.9626 Tf 7.749 0 Td [(c 0 ; .9 whichissucienttomakethedotproduct x x vanish: x x = h c 0 ;c 1 ;c 2 ;c 3 ih d 0 ;d 1 ;d 2 ;d 3 i = h c 0 ;c 1 ;c 2 ;c 3 ih c 3 ; )]TJ/F11 9.9626 Tf 7.749 0 Td [(c 2 ;c 1 ; )]TJ/F11 9.9626 Tf 7.749 0 Td [(c 0 i = c 0 c 3 )]TJ/F11 9.9626 Tf 9.963 0 Td [(c 1 c 2 + c 2 c 1 )]TJ/F11 9.9626 Tf 9.963 0 Td [(c 3 c 0 =0 : .10 Havingequatedscalingcoecientsforthescalingfunctionandwavelet,wecansolveforthe coecientsbydeningasucientnumberofequationswhichdescribeadesiredbehaviorforour basisfunctions.ThisamountstoaddingconditionsontheregularityofhigherorderDaubechies wavelets[8].Thersttwoconditionswewishtheabovecoecientstosatisfyareaconditiononthe 16

PAGE 21

sizeofthescalingfunction: L )]TJ/F7 6.9738 Tf 6.227 0 Td [(1 X k =0 c k =2 ; .11 thisconditionisactuallyrequiredforanyorthonormalwaveletbasis,seeappendixAandacondition thatshiftedbasisfunctionsaremutuallyorthogonalwheretheysharesupport: h c 0 ;c 1 ;c 2 ;c 3 ; 0 ; 0 ih 0 ; 0 ;c 0 ;c 1 ;c 2 ;c 3 i =0 0 c 0 +0 c 1 + c 0 c 2 + c 1 c 3 +0 c 2 +0 c 3 =0 ; .12 whichisequivalentto: c 0 c 2 + c 1 c 3 =0 : .13 RequirementsfororthogonalityandcoecientsizeholdforallDaubechieswaveletsandscalingfunctions,includingtheHaarwaveletdenedastheDaubechieswaveletwithL=2scalingcoecients. TheadditionalregularityrequirementsfortheDaubechiesL=4waveletbasisarethatwecan expressconstantandlinearfunctionsentirelyintermsofthescalingfunction.Thedotproductof h 1 ; 1 ; 1 ; 1 i withawaveletshouldthenvanish: c 3 )]TJ/F11 9.9626 Tf 9.963 0 Td [(c 2 + c 1 )]TJ/F11 9.9626 Tf 9.962 0 Td [(c 0 =0 ; .14 asshouldthedotproductofthewaveletwithaconstantfunction h 1 ; 2 ; 3 ; 4 i : c 3 )]TJ/F8 9.9626 Tf 9.963 0 Td [(2 c 2 +3 c 1 )]TJ/F8 9.9626 Tf 9.962 0 Td [(4 c 0 =0 : .15 Theabovetwoconditionsallowustoexactlydescribeconstantandlinearfunctionsusingthescaling functionasabasis.HigherorderDaubechieswaveletsareabletoexactlyrepresenthigher-order polynomialsbyrequiringsimilarconstraintsonthescalingcoecients[5].Namely,thescaling 17

PAGE 22

coecientsarerequiredtoobey X k )]TJ/F8 9.9626 Tf 7.749 0 Td [(1 k k m c k =0 .16 forincreasingordersofm. Oncewecalculatevaluesforthesescalingcoecients,wecanthenconstructthescalingfunction andsubsequently,thewavelet.Givenvaluesforthescalingcoecients,onewaytoconstructthe scalingfunctionisviathecascadealgorithm.Thecascadealgorithmbeginswithintegervaluesof thescalingfunctionwhicharegivenexplicitlybythescalingcoecientsandthencalculatesvalues forthescalingfunctionatthehalfintegersusingthemulti-scalerelationsM1andM2. ThecascadealgorithmfortheDaubechiesL=4scalingfunction: [15] Thealgorithmproceedsiteratively,calculatingvaluesateachstepathalfthespacingoftheprevious 18

PAGE 23

step,andthenllinginvaluesforthescalingfunctionusinglinearinterpolationoncetherepresentation issucientlydense. 19

PAGE 24

Chapter3 RepresentingFunctionsand DerivativeOperatorswithaWavelet Basis 3.1ProjectingFunctionsintoaWaveletBasis Givenanexpressionofafunctionasaweightedsuminvolvingawaveletbasis.3,wewantto calculatethecoecients, k .Wecanutilizetheorthogonalityoftheorthonormalwaveletbasis functions, < k j k 0 > = kk 0 ; .1 togenerateaformulaforthe k 'sapplyingthismethodtosineorcosinefunctionsisknownas Fourier'sTrick.Atagivenscale,wecanuse2.3torepresentfx: f x = X k k k x .2 20

PAGE 25

multiplyingbothsidesby l andintegratingyields Z l x f x dx = Z l x X k k k x dx = X k k Z l x k x dx: .3 Applyingtheorthogonalitycondition.1on : X k k Z l x k x dx = X k k l;k = l : .4 Thuswecanndthe k coecientsbyprojectingtheoriginalfunctionintothewaveletbasis: l = Z f x l x dx: .5 Forexample,taking f x =1 givescoecients k = Z 1 k x dx .6 whichisidentically1bythenormalizationcondition: Z x dx =1 : .7 Thus f x =1= X k k k x = X k k x .8 andweseethattoconstruct f x =1 withwaveletswejustaddtogetherwaveletsthataretranslated byk.Thatis,ifweaddtogetherscalingfunctionsastheyaretranslatedbyincrementsk,thenthey resultingfunctionshouldbegintolooklike f x =1 : 21

PAGE 26

Similarly,wecantake f x = x k = Z x k x dx .9 substituting y = x )]TJ/F11 9.9626 Tf 9.962 0 Td [(k = Z y + k y dy = Z y y dy + k Z y dy .10 wherewedenethe p th continuousmoment m p = Z x p x dx: .11 Thus f x = x = X k m 1 + km 0 k x .12 22

PAGE 27

andagainwecanaddtranslatedwaveletswithweights k = m 1 + km 0 toformtheoriginal function: 3.2ContinuousandDiscreteWaveletMoments Evaluatingthebasiscoecientsforawaveletrepresentationofafunctionofteninvolvesprojecting apolynomialinxintoawaveletbasis.Thisrequiresthatweevaluateintegralsoftheform m p = Z x p x dx: .13 wherewecall m p the p th continuousmomentforthescalingfunction x Tobegin,wecancalculatetherstcontinuousmoment, m 1 ,byapplyingthemulti-scalerelation M1 m 1 = Z x x dx = L )]TJ/F7 6.9738 Tf 6.226 0 Td [(1 X k =0 c k Z x x )]TJ/F11 9.9626 Tf 9.963 0 Td [(k dx: .14 23

PAGE 28

Substituting x = z + k = 2 yields m 1 = L )]TJ/F7 6.9738 Tf 6.226 0 Td [(1 X k =0 c k Z z + k 2 z dz 2 = 1 4 L )]TJ/F7 6.9738 Tf 6.227 0 Td [(1 X k =0 c k Z z z dz + k Z z dz ; .15 whichwerecognizeasasumoftherstandzerothcontinuousmoments: m 1 = 1 4 L )]TJ/F7 6.9738 Tf 6.227 0 Td [(1 X k =0 c k [ m 1 + km 0 ] : .16 Nowwehaveanequationforthecontinuousmoment m 1 intermsofsumsoverthecoecients c k Wedenethe p th discretemoment, p as p = 1 2 X k kc k .17 andwerewritetheaboveformulafor m 1 intermsofthesediscretemoments: m 1 = m 1 2 0 + m 0 2 1 : .18 Thenormalizationcondition.7givesus m 0 =1 ,where.11implies 0 =1 ,andwecanrewrite theaboveequationas: m 1 = m 1 2 + 1 2 ; .19 m 1 2 = 1 2 .20 m 1 = 1 .21 andwehaveexpressedanintegralnecessaryforprojectingfunctionsintowaveletspaceasadiscrete sumwhichcanbeevaluatednumerically.Similarresultscanbederivedforanyordercontinuous 24

PAGE 29

moment,withageneralformulagivenby[16]: m p = )]TJ/F8 9.9626 Tf 9.962 0 Td [(2 )]TJ/F10 6.9738 Tf 6.226 0 Td [(p )]TJ/F7 6.9738 Tf 6.227 0 Td [(1 p )]TJ/F7 6.9738 Tf 6.227 0 Td [(1 X p 0 =0 p p 0 m p 0 p )]TJ/F10 6.9738 Tf 6.226 0 Td [(p 0 ; .22 wherethe p arecalledthediscretemomentsandaregivenby: p = 1 2 L )]TJ/F7 6.9738 Tf 6.227 0 Td [(1 X k =0 c k k p : .23 3.3ApproximatingProjectionCoecientsusingNumericalQuadrature Whenwelackananalyticdescriptionfortheprojectioncoecientswecanapproximatethemby interpolatingvaluesforthefunctionfxalonganumberofsamplepoints, f x q g q r WecanapproximateanysmoothfunctionasasumofLagrangebasispolynomials.Thatis, f x L r x = r X q =1 f x q l x q .24 wherertheorderoftheinterpolationpolynomialgivesthenumberofLagrangebasispolynomials inthesum.Thebasispolynomialsthemselvesaregivenby: l r;q x = r Y q 0 6 = q x )]TJ/F11 9.9626 Tf 9.963 0 Td [(x q 0 x q )]TJ/F11 9.9626 Tf 9.963 0 Td [(x q 0 : .25 Formonomialsofdegree
PAGE 30

Lagrangebasisfunctions: x n = r X q =1 x n q l x q : .26 Theprojectioncoecientsforpolynomialsarealreadygivenbythecontinuouswaveletmoments,but inthecaseofmoregeneralfunctionswewanttobeabletoapproximatethecoecientsusingthe interpolatedvaluesforfxacrossthesamplepoints, f x q g : Z x f x r X q =1 q f x q : .27 Wecancalculatethevalues[17]forthe q atresolutionlevelJas: q = r )]TJ/F7 6.9738 Tf 6.227 0 Td [(1 X p =0 2 )]TJ/F9 4.9813 Tf 5.396 0 Td [(J 2 )]TJ/F10 6.9738 Tf 6.226 0 Td [(J p m p p l p r;q k 2 J : .28 Withtheaboveformulaewecanusewaveletstorepresentarbitrarysquare-integrablefunctions, althoughtheirimplementationindescribingpolynomialfunctionsasintheprevioustwosections remainsmuchsimpler. 3.4Finite-DierenceDerivativeOperators WhilethemethodsofthissectionareusedonlyintheFinite-DierenceTime-Domainsimulation ofelectromagneticwavepropagationandnotinMulti-ScaleTime-Domainsimulations,nitedierencemethodsoerasimpleintroductiontoapplyingderivativeoperatorstofunctionsina discretizedspace.Specically,thenite-dierencemethodappliesabandedderivativematrixtoa vectorrepresentingdiscretizedvaluesofsomefunction,fx.Thederivativematrixactsoneach pointinthevectorinsuchawaythatthenewpointmapstotheaccompanyingvalueoff'x.While themethodsofthissectionapplytoasimplediscretizedsamplingofsomefunction,themethod outlinedinsection3.5appliestofunctionsprojectedintoawaveletbasis,changingtheformofthe 26

PAGE 31

associatedderivativeoperators. Wecanapproximatethederivativeofafunctionbycalculatingtheslopeofthesecantlinewhich passesthroughthevaluesofthefunctionattwopointsseparatedbyasmalldistance, x : ForwardDierenceApproximation: f 0 x f x + x )]TJ/F11 9.9626 Tf 9.963 0 Td [(f x x ; .29 BackwardDierenceApproximation: f 0 x f x )]TJ/F11 9.9626 Tf 9.963 0 Td [(f x )]TJ/F8 9.9626 Tf 9.963 0 Td [( x x : .30 Wherethecontinuousrst-orderderivativeoffxdiersfromtheaboveapproximationsonlyinthat x 0 andthesecantlineconvergestoalinetangenttofx. Both.29and.30arerst-orderapproximations{theextenttowhichtheyaccuratelyapproximatethecontinuousderivativef'xvarieslinearlywithspacing x .Toseethis,wecanconsider theTaylorexpansionof f x + x : f x + x = f x + x f 0 x + x 2 2 f 00 x + :::; .31 fromwhichwesubtractfxandre-writethehigher-ordertermsasapolynomialin x : f x + x )]TJ/F11 9.9626 Tf 9.962 0 Td [(f x = x f 0 x + O x 2 : .32 Byrearrangingtheaboveterms,wecanwriteanerrorterm, O x ,whichdescribesthedierence betweenf'xanditsnite-dierenceapproximation.Fortheforwarddierenceapproximationwe have: f 0 x = f x + x )]TJ/F11 9.9626 Tf 9.963 0 Td [(f x x + O x : .33 27

PAGE 32

Higher-orderderivativescanalsobewrittenasnite-dierenceapproximations.Forinstance, wecanapproximatef"xasthedierencebetweentheforward-dierenceandbackward-dierence approximationsoff'x: f 00 x f x + x )]TJ/F10 6.9738 Tf 6.227 0 Td [(f x x )]TJ/F10 6.9738 Tf 11.158 4.832 Td [(f x )]TJ/F10 6.9738 Tf 6.226 0 Td [(f x )]TJ/F7 6.9738 Tf 6.227 0 Td [( x x x = f x + x )]TJ/F8 9.9626 Tf 9.962 0 Td [(2 f x + f x )]TJ/F8 9.9626 Tf 9.962 0 Td [( x x 2 .34 Finite-dierenceapproximationsliketheonesabovehaveadistinctadvantageincomputational simulationssincewecanusethemtoexpressthederivativesofafunctionusingbasicoperations addition,subtraction,multiplication,anddivision.Implementingtheseapproximatederivativeoperatorsisthusrelativelystraightforward.Thenextstepinnumericallyevaluatingagivendierential equationisthentoapplythesederivativeoperatorstoaspatially-discretizedsamplingofagiven function.Thatis,bysamplingafunctionfxatintervalsseparatedby x ,wecanexpressthe derivativeoperatorasamatrixwhichappliesthenite-dierenceapproximationtoeachsamplepoint offx.Discretizingthesecond-orderderivativeoperatorcanbeexpressedasamatrixoftheform: d 2 dx 2 1 x 2 2 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 4 1000 ::: 0 1 )]TJ/F8 9.9626 Tf 7.749 0 Td [(210 0 01 )]TJ/F8 9.9626 Tf 7.749 0 Td [(21 0 001 )]TJ/F8 9.9626 Tf 7.749 0 Td [(2 0 . . . . 0000 ::: 1 3 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 5 .35 which,whenappliedtoanappropriatelysampledfunction,yieldsanumericalapproximationforthe 28

PAGE 33

second-orderderivativeofthefunction: d 2 f dx 2 1 x 2 2 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 4 1000 ::: 0 1 )]TJ/F8 9.9626 Tf 7.749 0 Td [(210 0 01 )]TJ/F8 9.9626 Tf 7.749 0 Td [(21 0 001 )]TJ/F8 9.9626 Tf 7.749 0 Td [(2 0 . . . . 0000 ::: 1 3 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 5 2 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 4 f 1 f 2 f 3 f 4 f n 3 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 5 = 2 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 4 f 1 x 2 f 1 )]TJ/F7 6.9738 Tf 6.227 0 Td [(2 f 2 + f 3 x 2 f 2 )]TJ/F7 6.9738 Tf 6.227 0 Td [(2 f 3 + f 4 x 2 f 3 )]TJ/F7 6.9738 Tf 6.227 0 Td [(2 f 4 + f 5 x 2 f n x 2 3 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 5 .36 Tosolveadierentialequation,weneedonlyapplytheappropriatecoecientsandderivativeoperatorstoadiscretizedsamplingofagivenfunction.Forexample,consider )]TJ/F10 6.9738 Tf 8.021 -4.147 Td [(d dx 2 f = f x : 1 x 2 2 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 4 1000 ::: 0 1 )]TJ/F8 9.9626 Tf 7.749 0 Td [(210 0 01 )]TJ/F8 9.9626 Tf 7.748 0 Td [(21 0 001 )]TJ/F8 9.9626 Tf 7.749 0 Td [(2 0 . . . . 0000 ::: 1 3 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 5 2 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 4 f 1 f 2 f 3 f 4 f n 3 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 5 = 2 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 4 f 1 f 2 f 3 f 4 f n 3 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 5 : .37 Byexpressingderivativeoperatorsasmatriceswhichactondiscretizedsamplingsofafunction,we converttheproblemofsolvingadierentialequationintoaproblemofnumericallyevaluatinga systemofalgebraicequationswhichisamuchbetter-suitedproblemforcomputationalevaluation. Thisisalsothegoalinprojectingderivativeoperatorintoawaveletbasisasinthefollowingsection, althoughthemachineryismorecomplicated. 3.5ProjectingDerivativeOperatorsintoWaveletSpace Inordertosimulatethetime-dependentbehaviorofasystemitisnecessarytooperateonaspatiallydiscretizedfunctiondescribedasaseriesofcoecientsinawaveletbasisusingsomederivative 29

PAGE 34

operator.Numericallyevaluatingthederivativeofafunctioninvolvesspatiallydiscretizingthederivativeoperator,whichweaccomplishbyprojectingtheoperatorinawaveletbasis.Todothis,we calculatethequantity < j ^ H j k > ,whichinvolvesevaluatingintegralsoftheform r qk = Z x d dx q x )]TJ/F11 9.9626 Tf 9.963 0 Td [(k dx .38 Usingthemulti-scalerelationM1,thiscanbere-expressedasadouble-sumspecifyingthecoecient inthe q th rowand k th columnofaderivative-matrixr: r qk = L )]TJ/F7 6.9738 Tf 6.226 0 Td [(1 X k 0 =0 L )]TJ/F7 6.9738 Tf 6.226 0 Td [(1 X k =0 c k 0 c k Z x )]TJ/F11 9.9626 Tf 9.963 0 Td [(k 0 d dx q x )]TJ/F8 9.9626 Tf 9.963 0 Td [(2 k )]TJ/F11 9.9626 Tf 9.963 0 Td [(k dx: .39 Substituting y =2 x )]TJ/F11 9.9626 Tf 9.962 0 Td [(k 0 yields r qk = L )]TJ/F7 6.9738 Tf 6.226 0 Td [(1 X k 0 =0 L )]TJ/F7 6.9738 Tf 6.227 0 Td [(1 X k =0 c k 0 c k Z y q d dy q y )]TJ/F8 9.9626 Tf 9.963 0 Td [(2 k )]TJ/F11 9.9626 Tf 9.963 0 Td [(k + k 0 1 2 dy .40 resultinginanequationwhichrelatesthecoecientstoeachother: r qk =2 q )]TJ/F7 6.9738 Tf 6.227 0 Td [(1 L )]TJ/F7 6.9738 Tf 6.227 0 Td [(1 X k 0 =0 L )]TJ/F7 6.9738 Tf 6.227 0 Td [(1 X k =0 c k 0 c k r q; 2 k + k )]TJ/F10 6.9738 Tf 6.226 0 Td [(k 0 : .41 Wethenx r qk byrequiring[18]: q != X k x qk r qk .42 where x qk isamatrixwhose q th rowgivesprojectioncoecientsalongthekcolumnsforthe q th ordermonomialinx: x qk = Z x q k x .43 30

PAGE 35

Chapter4 Maxwell'sEquationsina Schrodinger-likeForm 4.1Maxwell'sEquations TosimulatethetimedependenceofanelectromagneticeldwelooktoMaxwell'sequations,which givepropagationthroughfreespaceoftheelectriceld E andmagneticinduction B as: E = c r B .1 and B = )]TJ/F11 9.9626 Tf 7.749 0 Td [(c r E : .2 Inordertosimulatepropagationthroughadielectricmedium,wemustalsoconsiderhowthematerial respondstothepresenceoftheelectromagneticwavesandaectstheirpropagation.Themeasure ofhowanelectromagneticeldinducesdipolemomentsinthematerialthroughwhichittravelsis 31

PAGE 36

givenbythepolarizationdensity, P : P + P = p 2 E ; .3 wheretheattenuationconstant, ,isameasureofhowtheelddiesoasitpassesthroughthe materialandtheplasmafrequency, p ,describestheoscillationoftheelectricchargedensityin metals.Chapter6describesthesimulationofanelectromagneticwavethroughsolidgold,where thesequantitiesaregiven[19]as p =2.16x 10 15 Hzand =1.75x 10 13 Hz. 4.2ConstructingaHamiltonianOperator Inordertoquicklysimulatethepropagationofanelectromagneticwavewewanttochangethe dierentialequationsdescribingtheeldbehaviorintoasystemofalgebraicequations.Inorderto dothis,weneedtoexpressthetimedependenceoftheelectromagneticeldsintheformofan equationrelatingthetime-andspace-derivativesofsomeeigenvector, : = 2 6 6 6 6 6 6 4 E B Q 3 7 7 7 7 7 7 5 ; .4 wherewedenethevector Q as: Q = 1 p P : .5 Wecanmatchequations.1,.2,.3,and.5todescribethetime-dependenceoftheelds in : E = c r B )]TJ/F11 9.9626 Tf 9.962 0 Td [(! p Q B = )]TJ/F11 9.9626 Tf 7.749 0 Td [(c r E Q = p E )]TJ/F11 9.9626 Tf 9.963 0 Td [( Q 32

PAGE 37

FromthiswecaneasilyconstructaHamiltonianoperator[20]toacton : ^ H = 2 6 6 6 6 6 6 4 0 ic r)]TJ/F11 9.9626 Tf 33.763 0 Td [(i! p )]TJ/F11 9.9626 Tf 7.748 0 Td [(ic r 00 i! p 0 )]TJ/F11 9.9626 Tf 7.749 0 Td [(i 3 7 7 7 7 7 7 5 .6 TheHamiltonianoperatorexpressesthespatialderivativesof inawaywhichallowsustowrite Maxwell'sequationsinaformresemblingthetime-dependentSchrodingerEquation: i d d t = ^ H : .7 Notethatif iszerothentheaboveHamiltonianisHermitianthatis, H y =H,where H y isthe conjugatetransposeofthematrixH.Non-HermitianHamiltoniansappearinthecaseoflossymedia andrequireslightlymorecomplicatedalgorithmstosimulateelectromagneticwavepropagation,as describedinsection5.3. Thegeneralsolutionfor attimetisgivenby: t = e )]TJ/F10 6.9738 Tf 6.227 0 Td [(i t )]TJ/F10 6.9738 Tf 6.227 0 Td [(t 0 ^ H t 0 .8 andsowe'vetranslatedtheproblemofndingthevalueoftheelectric,magnetic,andpolarization eldsatagiventimeintoaproblemofnumericallyevaluatingtheabovematrixexponentialand applyingittosomeinitialvalueof 33

PAGE 38

Chapter5 IterativeAlgorithms Oncewehaveestablishedourwaveletbasis,weborrowfromthematrixmethodsofquantummechanicstoformulateanalgorithmwhichallowsustopropagatestationaryandnon-stationarywaves. Thematrixdevelopedforaparticularprobleminourcase,theHamiltonianderivedfromMaxwell's equationsrepresentstheunderlyingphysicallawswewishtosimulate.TypicallytheHamiltonian matricesusedinevenone-dimensionalproblemsareverylarge;theygrowevenlargerasweaddressadditionalspatialdimensions.SincetheHamiltoniandescribestheoverallpropertiesofour system,andsinceourcalculationswillinvolveapplyingthematrixtoavectorrepresentationofthe electromagneticeldmanytimes,ithelpstoreducethematrixtoaworkableform. Inmostcases,thesizeofthematrixmakesdirectdiagonalizationcomputationallyintractable, soweusealgorithmsdesignedtogiveusasimpliedsquarematrixofdimensionmasopposedto thedimensionoftheoriginalsquareHamiltonianmatrix,n,wherem << n.Thissimpliedmatrix shouldhavesimilarpropertiesasthatofourHamiltonianmatrixi.e.,thedominanteigenvaluesof theHamiltonianmatrixshouldcorrespondtotheeigenvaluesofthesimpliedmatrix.Byreducing thedimensionofthematrixandapproximatingthebehavioroftheoriginalHamiltonian,iterative algorithmstendtoreducetheproblemofdeterminingtheeigenvaluesoftheHamiltonianmatrixfrom taking O n 3 stepstoaproblemrequiring O n 2 steps{asignicantimprovement[21]. 34

PAGE 39

Section5.1demonstrateshowasimpleiterativealgorithmaddressesthegeneralissueofapproximatingtheeigenvectorassociatedtothedominanteigenvalueoftheHamiltonianmatrix,whilethe latersectionsdescribemorecomplicatedalgorithmswhichwecanusetosimulateelectromagnetic wavepropagation. 5.1PowerIteration Oneofthesimplestwaystodeterminethebehavioroflargesparsematricesistoexaminejusttheir dominanteigenvalue.Wecanaccomplishthisusinganiterationtechniqueknownaspoweriteration. Thebasicideaisthatmultiplyingamatrixwitharandomlygeneratedvectoroutputsadierent vectorwithvaluesclosertothatofaneigenvectorcorrespondingtothedominanteigenvalueofthe matrix.Thatis,byiterativelymultiplyingtheoutputofamatrix-vectorproductwiththeoriginal matrixagainandnormalizingtheresultingvectorateachiteration,wecansolveforthedominant eigenvalueofasystem. Wecandemonstratepoweriterationbyndingtheeigenvectorwhichcorrespondstothedominant eigenvalueforanexample3x3matrix.Givensomematrix A = 2 6 6 6 6 6 6 4 231 46 )]TJ/F8 9.9626 Tf 7.748 0 Td [(4 35 )]TJ/F8 9.9626 Tf 7.748 0 Td [(2 3 7 7 7 7 7 7 5 .1 wecandirectlydetermineitseigenvaluesbysolvingthecharacteristicequation: 2 )]TJ/F11 9.9626 Tf 9.962 0 Td [( 31 46 )]TJ/F11 9.9626 Tf 9.962 0 Td [( )]TJ/F8 9.9626 Tf 7.749 0 Td [(4 35 )]TJ/F8 9.9626 Tf 7.749 0 Td [(2 )]TJ/F11 9.9626 Tf 9.963 0 Td [( = 3 )]TJ/F8 9.9626 Tf 9.962 0 Td [(6 2 + )]TJ/F8 9.9626 Tf 9.963 0 Td [(6=0 .2 35

PAGE 40

whichyieldseigenvalues f 1 ; 2 ; 3 g = f 6 ;i; )]TJ/F11 9.9626 Tf 7.748 0 Td [(i g .3 withcorrespondingeigenvectors ~v 1 = 0 B B B B B B @ 1 1 1 1 C C C C C C A ; ~v 2 = 0 B B B B B B @ 65 )]TJ/F8 9.9626 Tf 7.749 0 Td [(44+12 i 2+29 i 1 C C C C C C A ; ~v 3 = 0 B B B B B B @ 65 )]TJ/F8 9.9626 Tf 7.749 0 Td [(44 )]TJ/F8 9.9626 Tf 9.963 0 Td [(12 i 2 )]TJ/F8 9.9626 Tf 9.963 0 Td [(29 i 1 C C C C C C A : .4 Thepowermethodshouldtakeasinputanyvectorin C n andoutputavectorwhichapproximates thevectorassociatedwiththedominanteigenvalueoftheoriginalmatrix.Thatis,since k 1 k > k 2 k ; k 3 k ,weexpectthatpoweriterationwillresultinprogressivelybetterapproximationsofthe eigenvector ~v 1 .Toseeifthepoweriterationmethodyieldssimilarresults,wecouldchoosean arbitraryvector, ~u ,andrepeatedlymultiplyitbythematrixA: A 2 u = 2 6 6 6 6 6 6 4 1929 )]TJ/F8 9.9626 Tf 7.749 0 Td [(12 2028 )]TJ/F8 9.9626 Tf 7.749 0 Td [(12 2029 )]TJ/F8 9.9626 Tf 7.749 0 Td [(13 3 7 7 7 7 7 7 5 2 6 6 6 6 6 6 4 7 33 )]TJ/F8 9.9626 Tf 7.749 0 Td [(6 3 7 7 7 7 7 7 5 = 2 6 6 6 6 6 6 4 1162 1136 1175 3 7 7 7 7 7 7 5 ; .5 A 4 u = 2 6 6 6 6 6 6 4 7011015 )]TJ/F8 9.9626 Tf 7.749 0 Td [(420 7001016 )]TJ/F8 9.9626 Tf 7.749 0 Td [(420 7001015 )]TJ/F8 9.9626 Tf 7.749 0 Td [(419 3 7 7 7 7 7 7 5 2 6 6 6 6 6 6 4 7 33 )]TJ/F8 9.9626 Tf 7.749 0 Td [(6 3 7 7 7 7 7 7 5 = 2 6 6 6 6 6 6 4 40922 40948 40909 3 7 7 7 7 7 7 5 ; .6 A 8 u = 2 6 6 6 6 6 6 4 9079011316455 )]TJ/F8 9.9626 Tf 7.749 0 Td [(544740 9079001316456 )]TJ/F8 9.9626 Tf 7.749 0 Td [(544740 9079001316455 )]TJ/F8 9.9626 Tf 7.749 0 Td [(544739 3 7 7 7 7 7 7 5 2 6 6 6 6 6 6 4 7 33 )]TJ/F8 9.9626 Tf 7.749 0 Td [(6 3 7 7 7 7 7 7 5 = 2 6 6 6 6 6 6 4 53066762 53066788 53066749 3 7 7 7 7 7 7 5 : .7 Intheaboveexampleitisalsoeasytoseethatthecolumnsoftheresultingmatricesconvergeto 36

PAGE 41

theeigenvectorcorrespondingtothedominanteigenvalueoftheoriginalmatrix. Notethatalthoughthedirectcomputationoftheeigenvaluesfortheabove3x3matrixissimple inthiscase,theoperationsinvolvedbecomemuchmoredemandingasweincreasethedimensionsof thematrix.Itisalsonotalwaysthecasethatthepowermethodwillconvergeasquicklytothedesired eigenvectorasitdidintheaboveexample.Althoughtheyaremorecomplicatedtoimplementand mayrequiremorememory,othermethodsincludingKrylovmethods,asdescribedbelowimprove uponthebasictechniquesetforthbypoweriterationbyconvergingfastertothedesiredeigenvectors andallowingustoapproximateeigenvaluesbesidesthesinglelargesteigenvalue. 5.2KrylovSubspaceTechniques Thecentralproblemwhichwewishtosimplifyisthatofcomputingthematrixexponentialquantities whichdescribethestateofsolutionstoMaxwell'sequationsatagiventime.Onewaytosolvefor t isbyexpanding.8inaTaylorseries: t = e )]TJ/F10 6.9738 Tf 6.227 0 Td [(i t )]TJ/F10 6.9738 Tf 6.227 0 Td [(t 0 ^ H t 0 = 1 X n =0 )]TJ/F11 9.9626 Tf 7.748 0 Td [(i t n n ^ H n t 0 .8 wherethechiefcomputationaltaskbecomesevaluatingthegivenmatrix-vectorpairs.Whilewecan approximatesolutionsto t bychoosingasuitablysmalltimespacing, t ,andtruncatingthe seriesafteranitenumberofterms[22],theHamiltonianmatrixinvolvedtendstobelargeand sparse,whichmakesevaluatingthematrix-vectorproductscumbersome. Alternately,wecansignicantlyreducethecomputationalcomplexityofnding Psi t byapproximatingtheHamiltonianoperatorandapplyingittoasuitablebasisvector[1].Weapproximatethe Hamiltonianbytakingitsprojectioninthesubspace K m whichspanstherstm-1matrix-vector productsgeneratedbypoweriteration: K m = span f 0 ; ^ H 0 ; ^ H 2 0 ;:::; ^ H m )]TJ/F7 6.9738 Tf 6.227 0 Td [(1 0 g : .9 37

PAGE 42

ThisisthemainideabehinditerativealgorithmsknownasKrylovmethods.AlthoughsomeprecautionsmustbetakentopreventthebasisoftheabovesubspacecalledtheKrylovsubspacefrom becominglinearlydependent,wecanusethevectorsfromthesubspacetoformamatrixwhose eigenvaluesapproximatethedominanteigenvaluesoftheoriginalHamiltonian. 5.3TheLanczosAlgorithm Wecanorthonormalizeeachnewvectorinthesubspaceagainstitspredecessorsusingaprocess similartotheGram-Schmidtprocedure.TheLanczosalgorithmusestheseorthonormalizedvectors toproduceatridiagonalmatrixwithdimensionequaltothatoftheKrylovsubspace,theeigenvalues ofwhichapproximatethedominanteigenvaluesoftheoriginalHamiltonianmatrix.Fornon-Hermitian matriceswecanapplytheBi-orthogonalLanczosalgorithm[23],therststepofwhichconstructsa Krylovsubspacefromaninitialpairofnormalizedvectors v 1 w 1 : k ~v 1 k = k ~w 1 k =1 : .10 Whensimulatingthepropagationofelectromagneticwaves,theseinitialvectorsrepresenttheinitial conditionoftheelectromagneticeld.ThebiorthogonalLanczosalgorithmthendenessubsequent valuesof v j and w j bytakingmatrix-vectorproductsoftheHamiltonianmatrixandthepreceding vectors: ~ v j +1 = ^ H ~v j )]TJ/F11 9.9626 Tf 9.962 0 Td [( j ~v j )]TJ/F11 9.9626 Tf 9.963 0 Td [( j ~v j )]TJ/F7 6.9738 Tf 6.227 0 Td [(1 .11a ~ w j +1 = ^ H y ~w j )]TJ/F11 9.9626 Tf 9.963 0 Td [( j ~w j )]TJ/F11 9.9626 Tf 9.962 0 Td [( j ~w j )]TJ/F7 6.9738 Tf 6.227 0 Td [(1 .11b 38

PAGE 43

wheretheconstants j j ,and j aregivenby: j = ~w y j ^ H ~v j .12a j = k ~w j k .12b j = k ~v j k ; .12c andwheretheresultingvectorsarenormalizedbeforethenextiteration: ~v j +1 = ~ v j +1 n +1 .13a ~w j +1 = ~ w j +1 n +1 : .13b OncetheKrylovsubspaceislargeenough,thealgorithmterminatesandweconstructatridiagonal matrix, T m ,whoseeigenvaluesapproximatethedominanteigenvaluesoftheoriginalHamiltonian matrix: T m = 0 B B B B B B B B B B B B B B @ 1 2 0 ::: 0 2 2 3 . 0 3 . 0 . . . m 0 ::: 0 m m 1 C C C C C C C C C C C C C C A : .14 Analnote:wecanformtheKrylovsubspacefromasmanymatrix-vectorproductsaswelike uptothenumberofthedimensionoftheoriginalHamiltonian,atwhichpointtheeigenvalues oftheresultingmatrixexactlyequaltheeigenvaluesoftheHamiltonian.However,inpractice theeigenvaluesofthetridiagonalmatrixconvergequicklytothoseoftheHamiltonianandsothe dimension,m,oftheunderlyingKrylovsubspaceisusuallyaround10. 39

PAGE 44

Chapter6 ExampleSimulation Tosimulatethepropagationofanelectromagneticeldinone-dimensionwedeneasourcefunction fortheelectriceld: whichwediscretizebycalculatingtheprojectioncoecientsofthewaveletbasisusedtorepresent thefunction.Theresultisaspatiallydiscretizedelectriceldvector: 40

PAGE 45

. ThenextstepistogenerateaKrylovbasisbyapplyingtheHamiltonianmatrix.6totheabove eldvector.WethenruntheLanczosalgorithm,usingthevectorsintheKrylovsubspacetogenerate thecoecientsofatridiagonalmatrixwhichismuchsmallerthantheoriginalHamiltonianmatrix: 41

PAGE 46

0 B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B @ 0 28.9456794 i 0 : 501295700000000 0 : 5012957 )]TJ/F8 9.9626 Tf 7.749 0 Td [(0 : 0172822 i 0 : 49824050000000 00 : 4982405 )]TJ/F8 9.9626 Tf 7.748 0 Td [(0 : 0002069 i 0 : 0090538000000 000 : 00905380 : 0185326 i 0 : 716464800000 0000 : 7164648 )]TJ/F8 9.9626 Tf 7.749 0 Td [(0 : 0354838 i 0 : 00118500000 00000 : 001185010 : 5274038 i 14 : 6534813000 0000014 : 6534813 )]TJ/F8 9.9626 Tf 7.749 0 Td [(15 : 6032195 i 4 : 9244249 i 00 0000004 : 9244249 i 5 : 0589165 i 0 : 0043963 i 0 00000000 : 0043963 i 0 : 0747066 i 0 : 7685698 000000000 : 7685698 )]TJ/F8 9.9626 Tf 7.748 0 Td [(0 : 0893247 i 1 C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C A Thetridiagonalmatrixofdimensionm=10generatedbytheLanczosalgorithmfortheHamiltonianoperatordenedin.6.Thismatrixisactually forpropagationthroughlosslessmedia,ittsonapagebetterthantheoneusedforthelossymediasimulation.Thedimensionoftheoriginal discretizedHamiltonianoperatorcanbemanyordersofmagnitudelarger,resultingincumbersomecomputationalstepsin.8. 42

PAGE 47

WecanthensimplyusethismatrixinplaceoftheoriginalHamiltoniantocalculatethematrixexponentialquantities.8andestimatethevaluesoftheelectromagneticeldsatagiventime. Foralossygolddielectricfunction,wecandemonstratethedropointhemagnitudeofthe electromagneticelds: Thedecreaseinthemagnitudeoftheelectromagneticsupervector, ,iscalculatedaboveatdiscrete timesteps t.Wecanalsocalculatevaluesfortheindividualeldsateachofthesetimesteps: 43

PAGE 48

44

PAGE 49

Chapter7 Conclusion Thewaveletbasesdescribedinchapters2and3haveavarietyofapplications,includingsignal processingandmodellingpartialdierentialequations.Theiterativealgorithmsdescribedinchapter 5areembeddedinthesolutionoftime-steppingpropagationmethodsforelectromagneticwavesas describedinchapter4.Specically,byapplyingtheBiorthogonalLanczosAlgorithmtothenonHermitianHamiltoniandescribingalossydielectricfunction,itispossibletoeectivelysimulatethe propagationanddecreaseinmagnitudeoftheelectric,magneticandpolarizationeldsthrougha lossymedium.Inall,theMulti-ScaleTime-Domainmethoddevelopedallowsforthesimulationof electromagneticwavesthroughlossymediaandcanapplytomorecomplicatedsimulations,including hopefullythesimulationofelectromagneticwavespropagatingacrossadiscontinuousdielectric functionorinthepresenceofcurrentandchargesources-scenariostowhichtheFinite-Dierence Time-Domainispoorlysuitedduetothedicultiesinvolvedinmodellingthephysicalpropertiesof thesesystemsusingFourierbasisfunctions. 45

PAGE 50

AppendixA SizeRequirementonScaling Coecients Combiningtheorthogonalityrequirement.1ofanorthonormalwaveletbasiswiththemulti-scale relationM1allowsustoderiveaconstraintonthecombinedsizeofthescalingcoecients.By substitutingy=x+k,wecanchangetheformoftheorthogonalitycondition: < k j k 0 > = Z x )]TJ/F11 9.9626 Tf 9.962 0 Td [(k x )]TJ/F11 9.9626 Tf 9.963 0 Td [(k 0 dx = Z y y + k )]TJ/F11 9.9626 Tf 9.963 0 Td [(k 0 dy = kk 0 ; A.1 whereletting k 0 =0 yields: Z x x + k dx = k; 0 A.2 46

PAGE 51

Byscalingthebasisfromj=0toj=1weintroduceanequationinvolvingthecoecients, c l and c m : L )]TJ/F7 6.9738 Tf 6.227 0 Td [(1 X l =0 c l L )]TJ/F7 6.9738 Tf 6.227 0 Td [(1 X m =0 c m Z x )]TJ/F11 9.9626 Tf 9.962 0 Td [(l [ x )]TJ/F11 9.9626 Tf 9.963 0 Td [(k ] )]TJ/F11 9.9626 Tf 9.963 0 Td [(m dx = k; 0 A.3 Substitutingy=2x-l,weobtain: L )]TJ/F7 6.9738 Tf 6.227 0 Td [(1 X l =0 c l L )]TJ/F7 6.9738 Tf 6.227 0 Td [(1 X m =0 c m Z y y )]TJ/F8 9.9626 Tf 9.963 0 Td [(2 k )]TJ/F11 9.9626 Tf 9.963 0 Td [(m + l dy 2 = k; 0 A.4 Imposingtheorthogonalityconditionontheintegralagainyields: Z y y )]TJ/F8 9.9626 Tf 9.962 0 Td [(2 k )]TJ/F11 9.9626 Tf 9.962 0 Td [(m + l dy = m +2 k;l ; A.5 andthus k; 0 = 1 2 L )]TJ/F7 6.9738 Tf 6.226 0 Td [(1 X l =0 c l L )]TJ/F7 6.9738 Tf 6.227 0 Td [(1 X m =0 c m m +2 k;l = 1 2 L )]TJ/F7 6.9738 Tf 6.227 0 Td [(1 X m =0 c m +2 k c m A.6 Thisyieldsaconditiononthewaveletcoecients: L )]TJ/F7 6.9738 Tf 6.226 0 Td [(1 X m =0 c m +2 k c m =2 k; 0 : A.7 Or,letting k =0 L )]TJ/F7 6.9738 Tf 6.226 0 Td [(1 X m =0 c 2 m =2 ; A.8 whichimplies.11. 47

PAGE 52

Bibliography [1]KurtBusch,JensNiegemann,MartinPototschnig,andLashaTkeshelashvili.Akrylov-subspace basedsolverforthelinearandnonlinearmaxwellequations. pss-b ,244:3479{3496,September2007. [2]AllenTaoveandSusanC.Hagness. ComputationalElectrodynamics:TheFinite-Dierence Time-DomainMethod .ArtechHouse,secondedition,2000. [3]RobiPolikar.Cosinefouriertransform,1994.CosineFourierTransformimage. [4]Omegatron.Haarwavelet,June2006.Haarwaveletimage. [5]GilbertStrang.Waveletsanddilationequations:Abriefintroduction. SiamReview ,31:613{ 627,1989. [6]RoyHaandJustinRomberg.Thehaarscalingfunctionandwaveletsatdierentresolutions, July2006.Haarscalingfunctionandwaveletsimage. [7]GeorgeOppenheim. WaveletsandtheirApplications .ISTELtd,2007. [8]M.PollicottandH.Weiss.Howsmoothisyourwavelet?waveletregularityviathermodynamic formalism.June2005. [9]AlfredHaar.Zurtheoriederorthogonalenfunktionensysteme. Math.Ann. ,69:331{371,1910. [10]LutzL.Daubechies4tapwaveletandscalingfunctions,June2005.DaubechiesL=4image. 48

PAGE 53

[11]LutzL.Daubechies12tapwaveletandscalingfunctions,June2005.DaubechiesL=12image. [12]LutzL.Daubechies20tapwaveletandscalingfunctions,June2005.DaubechiesL=20image. [13]FilipWasilewski.Symlet6waveletandscalingfunctions,2008.Symmletscalingfunctionand waveletimage. [14]GilbertStrang.Wavelets. AmericanScientist ,82:250{255,April1994. [15]PhilSchniter.Steps1-5,10ofthecascadealgorithm,June2009.CascadeAlgorithmimage. [16]BruceR.Johnson,JasonP.Modisette,PeterJ.Nordlander,andJamesL.Kinsey.Quadrature integrationfororthogonalwaveletsystems. JournalofChemicalPhysics ,110:8309{8317, May1999. [17]BruceR.JohnsonandJamesL.Kinsey.Quadraturepreltersforthediscretewavelettransform. IEEETransactionsonSignalProcessing ,48:873{875,March2000. [18]G.Beylkin.Ontherepresentationofoperatorsinbasesofcompactlysupportedwavelets. SIAM JournalonNumericalAnalysis ,29:1716{1740,December1992. [19]RamiroAcevedo,RichardLombardini,MatthewA.Turner,JamesL.Kinsey,andBruceR. Johnson.Quantumandelectromagneticpropagationwiththeconjugatesymmetriclanczos method. TheJournalofChemicalPhysics ,128,2008. [20]AndreiG.BorisovandSergeiV.Shabanov.Lanczospseudospectralmethodforinitial-valueproblemsinelectrodynamicsanditsapplicationstoioniccrystalgratings. JournalofComputational Physics ,209:643{644,2005. [21]GeorgeW.CollinsII. FundamentalNumericalMethodsandDataAnalysis .2003. [22]CarlP.Goodrich,RichardLombardini,RamiroAcevedo,andBruceR.Johnson.Non-hermitian propagationtechniquesinamulti-resolutionwaveletbasis.2008. [23]RolandW.Freund.Lanczos-typealgorithmsforstucturednon-hermitianeigenvalueproblems. 49


ERROR LOADING HTML FROM SOURCE (http://ncf.sobek.ufl.edu//design/skins/UFDC/html/footer_item.html)