ERROR LOADING HTML FROM SOURCE (http://ncf.sobek.ufl.edu//design/skins/UFDC/html/header_item.html)

Hyperbolic Structures On Weave Complements

Permanent Link: http://ncf.sobek.ufl.edu/NCFE004323/00001

Material Information

Title: Hyperbolic Structures On Weave Complements
Physical Description: Book
Language: English
Creator: Shottland, Indra
Publisher: New College of Florida
Place of Publication: Sarasota, Fla.
Creation Date: 2010
Publication Date: 2010

Subjects

Subjects / Keywords: Hyperbolic
3-Manifold
Weave Complement
Alternating Weave
Augmented Weave
Genre: bibliography   ( marcgt )
theses   ( marcgt )
government publication (state, provincial, terriorial, dependent)   ( marcgt )
born-digital   ( sobekcm )
Electronic Thesis or Dissertation

Notes

Abstract: We study a class of hyperbolic 3-manifold with non-finitely generated fundamental group: weave complements. We describe how to endow these spaces with a hyperbolic structure by (1) decomposing them into ideal octahedra and (2) realizing these ideal octahedra in hyperbolic space. Conditions are given which ensure that an alternating weave is hyperbolic. We then extend our results to augmented alternating weaves.
Statement of Responsibility: by Indra Shottland
Thesis: Thesis (B.A.) -- New College of Florida, 2010
Electronic Access: RESTRICTED TO NCF STUDENTS, STAFF, FACULTY, AND ON-CAMPUS USE
Bibliography: Includes bibliographical references.
Source of Description: This bibliographic record is available under the Creative Commons CC0 public domain dedication. The New College of Florida, as creator of this bibliographic record, has waived all rights to it worldwide under copyright law, including all related and neighboring rights, to the extent allowed by law.
Local: Faculty Sponsor: McDonald, Patrick

Record Information

Source Institution: New College of Florida
Holding Location: New College of Florida
Rights Management: Applicable rights reserved.
Classification: local - S.T. 2010 S55
System ID: NCFE004323:00001

Permanent Link: http://ncf.sobek.ufl.edu/NCFE004323/00001

Material Information

Title: Hyperbolic Structures On Weave Complements
Physical Description: Book
Language: English
Creator: Shottland, Indra
Publisher: New College of Florida
Place of Publication: Sarasota, Fla.
Creation Date: 2010
Publication Date: 2010

Subjects

Subjects / Keywords: Hyperbolic
3-Manifold
Weave Complement
Alternating Weave
Augmented Weave
Genre: bibliography   ( marcgt )
theses   ( marcgt )
government publication (state, provincial, terriorial, dependent)   ( marcgt )
born-digital   ( sobekcm )
Electronic Thesis or Dissertation

Notes

Abstract: We study a class of hyperbolic 3-manifold with non-finitely generated fundamental group: weave complements. We describe how to endow these spaces with a hyperbolic structure by (1) decomposing them into ideal octahedra and (2) realizing these ideal octahedra in hyperbolic space. Conditions are given which ensure that an alternating weave is hyperbolic. We then extend our results to augmented alternating weaves.
Statement of Responsibility: by Indra Shottland
Thesis: Thesis (B.A.) -- New College of Florida, 2010
Electronic Access: RESTRICTED TO NCF STUDENTS, STAFF, FACULTY, AND ON-CAMPUS USE
Bibliography: Includes bibliographical references.
Source of Description: This bibliographic record is available under the Creative Commons CC0 public domain dedication. The New College of Florida, as creator of this bibliographic record, has waived all rights to it worldwide under copyright law, including all related and neighboring rights, to the extent allowed by law.
Local: Faculty Sponsor: McDonald, Patrick

Record Information

Source Institution: New College of Florida
Holding Location: New College of Florida
Rights Management: Applicable rights reserved.
Classification: local - S.T. 2010 S55
System ID: NCFE004323:00001


This item is only available as the following downloads:


Full Text

PAGE 1

HYPERBOLICSTRUCTURESONWEAVECOMPLEMENTSbyIndraShottlandAthesissubmittedinpartialfulllmentoftherequirementsforthedegreeofBachelorofArtsMathematicsinNewCollegeofFlorida2010ThesisCommittee:PatrickMcDonald,SponsorDavidMullinsDonColladay

PAGE 2

ACKNOWLEDGEMENTSIwishtothankmyfellowmembersoftheHyperbolicGeometrygroupduringSMALL2008:ShawnRafalskiforyourenthusiasticsupportduringandafterSMALL,KarinKnudsonandJeremyLeachforbeingfuncollaborators.ii

PAGE 3

HYPERBOLICSTRUCTURESONWEAVECOMPLEMENTSIndraShottlandNewCollegeofFlorida,2010ABSTRACTWestudyaclassofhyperbolic3-manifoldwithnon-nitelygeneratedfundamentalgroup:weavecomplements.Wedescribehowtoendowthesespaceswithahyper-bolicstructurebydecomposingthemintoidealoctahedraandrealizingtheseidealoctahedrainhyperbolicspace.Conditionsaregivenwhichensurethatanal-ternatingweaveishyperbolic.Wethenextendourresultstoaugmentedalternatingweaves.PatrickMcDonaldDivisionofNaturalScienceiii

PAGE 4

TABLEOFCONTENTSACKNOWLEDGEMENTS::::::::::::::::::::::::::::::::::iiLISTOFFIGURES::::::::::::::::::::::::::::::::::::::vCHAPTERI.Introduction.......................................1II.AlternatingWeaveComplements..........................32.1Denitions.....................................32.2TopologicalConstruction.............................52.3HyperbolicAlternatingWeaves..........................92.4Bigons.......................................17III.AugmentedAlternatingWeaves...........................213.1Denitions.....................................213.2TopologicalConstruction.............................223.3HyperbolicAugmentedAlternatingWeaves...................273.4Bigons.......................................34IV.Conclusion........................................36APPENDICES::::::::::::::::::::::::::::::::::::::::::38BIBLIOGRAPHY::::::::::::::::::::::::::::::::::::::::74iv

PAGE 5

LISTOFFIGURESFigure 2.1APortionoftheSquareWeave.............................42.2PlacingOctahedraatCrossings.............................52.3PrescriptionforIdentifyingFaces............................52.4TruncatedOctahedra...................................72.5FillingtheComplement.................................92.6DecomposinganIdealOctahedron...........................112.7Top-DownViewofDecompositon............................112.8ParametrizingIdealOctahedraAlongaStrand....................122.9OctahedraWithSomeLinks...............................122.10LinksArrangedSideBySide..............................132.11EdgeInvariantsInsideaRegion.............................142.12ArrangementofLinksFromInsideaRegion......................152.13OctahedrawithCorrespondingStrandLink......................162.14APortionofaStrandLink...............................162.15PlacementandParametrizationforaBigonRegion..................182.16FacePairingforaBigonRegion.............................192.17PortionsofLinksfromBigonStrands..........................192.18PortionofNorthernPlanefromBigonRegion.....................202.19PlacementforAdjacentBigonRegions.........................202.20FacePairingforAdjacentBigonRegions........................203.1AnAugmentedSquareWeave..............................22v

PAGE 6

3.2AddingaCircleAroundaCrossing...........................223.3DrillingOutanAugmentingCircle...........................233.4CollapsinganAugmentingCircle............................233.5RemovingIdealTriangles................................243.6AMoreSymmetricStar.................................243.7DecomposingtheNeighborsofaStar..........................253.8FacePairingofaStarandIt'sNeighbors........................263.9TheTwoTypesofAugmentingCircleNotAroundaCrossing............273.10TwicePuncturedDiskRedinaStar.........................273.11EdgeInvariantsofaStar.................................283.12EdgeInvariantsofaNeighbortoaStar........................293.13PortionsofLinksfromOverandUnderStrands....................303.14ParametrizationAlongtheNorthern"NeighboringStrand.............313.15PortionofLinkfromtheNorthern"NeighboringStrand...............313.16LinkofanAugmentingCircle..............................323.17ParametrizationoftheInner"RegionsofanAugmentedCrossing.........323.18PortionofNorthernPlanefromAugmentedCrossing.................333.19AugmentingCirclewithBigon..............................343.20AugmentingCircleAroundaBigon...........................343.21AugmentingCirclesnotConsidered...........................35A.1AnIdealTetrahedroninUpperHalfSpace.......................40A.2TheDihedralAnglesofaTetrahedron.........................41A.3TheVertexInvariantzuoftheTriangle4u;v;w.................43A.4TheTriangle4;1;zu................................44A.5TheEdgeInvariantsofanIdealTetrahedron.....................46B.1ArrangingTetrahedraSideBySide...........................50B.2DistanceFromLinkEdgeToNon-incidentVertex...................65vi

PAGE 7

CHAPTERIIntroductionKleiniangroups,thediscretegroupsoforientationpreservingisometriesofhyper-bolicspace,havebeenstudiedformanyyears.ThoughfewexamplesofhyperbolicmanifoldsquotientsofhyperbolicspaceMG=H3=GbytheactionofaKleiniangroupGwereknownpriortotheworkofWilliamThurstoninthe1970's,hisGeometrizationConjecturemadecleartheimportanceofthetheoryofhyperbolicmanifoldsintheclassicationof3-manifolds.Inthespecialcaseofknotcomple-ments,itstatesthatforaknotKinR3,exactlyoneofthefollowingholds:Kisatorusknot,Kisasatelliteofanontrivialknot,orthecomplementofKinS3admitsacompletemetricwhichistopologicallyequivalenttotheeuclideanmetricandislocallyisometrictothehyperbolicmetricofhyperbolicspaceH3.SeeBonahon[4]fordenitionsandanelementarydiscussion.Onemayask,whataresucientinvariantstodetermineahyperbolic3-manifolduptoisometry?Theanswertothisquestionisknowninmanycases.Inthenitevolumecase,theMostow-PrasadRigidityTheoremtellsusthatthefundamentalgroupGissuchaninvariant.Inotherwords,thehyperbolicstructureonanitevolumehyperbolic3-manifoldMGisrigidanddeterminedbyG.SeeBenedetti-Petronio[3]foraproof.1

PAGE 8

2Inthecaseofahyperbolic3-manifoldMGwithnitelygeneratedG,wehavetheEndingLaminationTheorem.OriginallyaconjectureofThurston,itstatesthatahyperbolicmanifoldisdetermineduniquelyuptoisometrybyitstopologicalstructureanditsendinvariants"theendsofanitevolumehyperbolicmanifoldareeitheremptyorcusps,theendinvariantsareempty,andtheproblemreducestotheMostow-PrasadRigidityTheorem.TheEndingLaminationTheoremhasbeenestablishedforalltopologicallytamehyperbolic3-manifoldshomeomorphictotheinteriorofacompactmanifoldin[5],[6],and[9],whiletheproofthatallhyperbolic3-manifoldswithnitelygeneratedfundamentalgrouparetopologicallytamewasgivenindependentlybyAgol[2]andCalegari-Gabai[7].Onemayask,cantheseresultsbeextendedinanywaytohyperbolic3-manifoldswithinnitelygeneratednon-nitelygeneratedfundamentalgroup?Kleiniangroupscanbequitecomplicated,andindeedmanytheoremsthataretruefornitelygen-eratedgroupsfailforgroupsingeneral.Inthisthesis,westudyaspecialclassofhyperbolic3-manifoldwithinnitelygeneratedfundamentalgroup:weavecomplements.Tounderstandthesecomple-ments,wefollow[11]anddecomposethemintotopologicalidealoctahedra,solidoctahedrawithverticesremoved.Takingtheidealoctahedraoneforeachcross-ingintheprojectionandidentifyingtheirfacesinaprescribedfashionbuildsthecomplementoftheweavetopologically.Thehyperbolicstructureisthengivenbyrealizingtheseidealoctahedrainhyperbolicspace.Conditionsaregivenwhichen-surethatanalternatingweavecomplementadmitsahyperbolicstructure.Wethendetermineconditionsunderwhichanaugmentedalternatingweaveishyperbolic,apartialanaloguetothetheoremofAdams[1].

PAGE 9

CHAPTERIIAlternatingWeaveComplementsInthischapter1wedescribehowtoconstructthetopologyofanalternatingweavecomplementusingidealoctahedra,solidoctahedrawithverticesremoved.Werstconsideralternatingweaveswithprojectionsfreeofbigonsdenitionbelow.Wedescribesucientconditionstoendowtheircomplementswithahyperbolicstruc-ture,andgiveconditionsunderwhichthehyperbolicstructureofadoublyperiodicweaveiscomplete.Wethenextendourresultstothecaseofweaveswithisolatedbigonsdenitionbelow.2.1DenitionsAweaveisacountablyinnitecollectionofdisjointlinesandcirclesembeddedinR3.Throughoutthisthesis,weonlyconsiderthoseweaveswithregularprojectionsonthehorizontalplaneP=fx;y;z2R3jz=0gsatisfyinganumberofproperties.Tolisttheseproperties,werestrictourattentiontoweaveswhoseprojectionontoPisa4-valentgraphGwhoseverticesarethecrossingsoftheprojection.Unlessotherwisenoted,wefurtherrestrictattentiontoweaveswithGsatisfying:iGisinnite,planar,connected,andhasnitelymanyverticesinanyball.iiAllconnectedregionsofP)]TJ/F33 11.9552 Tf 11.9552 0 Td[(Garebounded. 1Muchofthecontentofthischapterhasbeenobtainedfrom[8].3

PAGE 10

4iiiEachvertexofGmeetstheclosureoffourdistinctregionsofP)]TJ/F33 11.9552 Tf 11.9552 0 Td[(G.ivTherearenoregionssurroundedbytwoedgeswithonepassingbelowatbothvertices.Thenextpropertyistheonlyonethatisn'trequiredforthemethodsweuse.Werequireittosimplifyourarguments,thoughwewillremarkonhowitcanberelaxed.AbigonisaconnectedregionintheplaneofprojectionPsurroundedbyexactlytwoedges.TwobigonsareisolatediftheyhavedisjointclosuresinP.Wefurtherrequire:vAllbigonsinPareisolated.Aweavesatisfyingtheabovepropertiesiscalledalternatingifallthecrossingsoftheprojectionalternate.Perhapsthesimplestalternatingweave,thesquareweave,isshowninFigure2.1.AweavecomplementisthecomplementofaweaveinR3. Figure2.1:APortionoftheSquareWeave

PAGE 11

52.2TopologicalConstructionToconstructthetopologyofanalternatingweavecomplement,rstapplyanambientisotopywhichplacestheweaveclosetotheprojectionplaneP.ThenplaceanidealoctahedronateachcrossingasinFigure2.2.Finally,gluethefacesofeachoctahedrontothefacesofit'sneighboringoctahedraaccordingtotheprescriptioninFigure2.3.Notethateachoctahedronhasfourneighbors,buttheprescriptionforthegluinginFigure2.3showsonlytwoneighbors.ThegluingforthetwoneighborsnotshownisgivenbyrotatingthepictureinFigure2.3upsidedown". Figure2.2:PlacingOctahedraatCrossings Figure2.3:PrescriptionforIdentifyingFaces

PAGE 12

6Theorem2.2.1.LetWbeanalternatingweavewithanassociatedcollectionoftopologicalidealoctahedra.IfweidentifytheoctahedraaccordingtoFigure2.3insuchawaythatnotwopointsonthesameedgearegluedtogether,oneobtainsaspacehomeomorphictotheweavecomplementR3)]TJ/F33 11.9552 Tf 11.9551 0 Td[(W.Proof.Withoutlossofgenerality,assumethatWliesentirelyintheslabdenedbyS=fx;y;z2R3:jzj
PAGE 13

7 Figure2.4:TruncatedOctahedra

PAGE 14

8Itisclearfromthepicturethatwhenthesetruncatedoctahedraaregluedtogether,theyllaportionoftheclosureoftheslabS.Asthislocalpictureisthesamealongeverystrand,thetruncatedoctahedragluetogethertoformaspacehomeomorphictoS)]TJ/F33 11.9552 Tf 10.9904 0 Td[(NW,whereNWSiscomposedofdisjointopentubularneighborhoodsofeverystandinW.Byinspectionofthefacepairing,thecuspscorrespondingtoagivenstrandgluetoformacylinderortorus,dependingonthetypeofstrandcrossanopeninterval.ThisllseachcorrespondingcomponentofNW)]TJ/F33 11.9552 Tf 11.1826 0 Td[(W.Furthermore,theremainingtwocuspscorrespondingtothefacespulledupanddowntotheboundaryofSgluetoformtwoopenballs,llingtheremainderofthecomplementR3)]TJ/F16 11.9552 Tf 13.9518 3.022 Td[(S.Thisshowsthatthegluedidealoctahedracanbedeformed,withoutaectingthetopology,tollR3)]TJ/F33 11.9552 Tf 11.9551 0 Td[(W.Thisprovesthatthesetwospacesarehomeomorphic. TheedgeconditioninthestatementofTheorem2.2.1doesnotlimittheclassofweavestowhichwecanapplythisconstruction.Thatis,allweavecomplementscanbebuiltfromidealoctahedrawiththisconditionsatised.Onewaytodothis,forexample,istousepairwiseisometricregularidealeuclidianoctahedra.Withtheseoctahedraandeuclideanisometriesforgluingmaps,theedgeconditionwillalwaysbesatised.Thencuttingoeuclideanballscenteredattheidealverticeswithaxedbutsucientlysmallsothattheballsaredisjointradiusgivestruncatedoctahedrasatisfying-intheproofofTheorem2.2.1.Onecanthendeformtheoctahedratocompletetheproof.Thisconstructiongivesamethodforbuildingthetopologyofanalternatingweavecomplementwhereeachstrandoftheweaveisidentiedwiththeequivalenceclassofit'sincidentidealvertices.Conceptually,wearellingallofR3abovetheweavebyidentifyingthepairofrededgesinFigure2.5andpullingtheminthepositive

PAGE 15

9z-directionwithoutbound.Similarly,identifyingtheindicatedpairofblueedgesandpullingtheminthenegativez-directionllsoutspacebelowtheweave.Finally,identifyingedgesandfacesasinFigure2.3llstheremainderofthecomplement. Figure2.5:FillingtheComplement2.3HyperbolicAlternatingWeavesNowthatwehaveamethodforconstructingthetopologyofanyalternatingweavecomplementusingidealoctahedra,wecanturntohowweendowthesespaceswithahyperbolicstructure,thatisametriconaweavecomplementwhichistopologicallyequivalenttotheeuclideanmetricinthesensethattheidentitymapisahomeomorphism,locallyisometrictothemetricofH3,andcomplete.Thisisjustamatterofrealizingeachidealoctahedronasanidealhyperbolicoctahedron.AhyperbolicpolyhedronisaclosedregionXinH3delimitedbynitelymanyidealpolygons,calleditsfaces.ApolygoninH3isaclosedsubsetFofahyperbolicplaneH3whichisdelimitedinbynitelymanygeodesicscalleditsedges.Werequirethatedgescanonlymeetattheirendpoints,calledvertices,andthateachvertexisadjacenttoexactlytwoedges.Wealsorequirethatfacesonlymeetalongedgesandverticesandthatanedgeisadjacenttoexactlytwofaces.Nowanidealhyperbolicpolyhedronisahyperbolicpolyhedronwithonlyidealvertices,verticesinthesphereatinnity^C=C[f1gforupperhalf-space.Inorderto

PAGE 16

10avoidunnecessarycomplicationse.g.twofacestouchingatvinthesphereatinnitywithoutvtheendpointofanedge,wealsorequirethatforeachidealvertexv,thereisasmalleuclideanballBcenteredatvsothatBXisconnected.Toconstructametricsatisfying-above,breakeachidealhyperbolicocta-hedronintofouridealhyperbolictetrahedraalongtherepole"asinFigures2.6and2.7andlabeleachidealtetrahedronwiththeedgeinvariantasindicatedinFigure2.8.SeeAppendixAfordetailsonedgeinvariants.Thefollowingtheoremgivesconditionsunderwhichwehaveametriconanalternatingweavecomplementsatisfyingconditionsandabove.Theorem2.3.1.LetWbeanalternatingweavesatisfyingtheconditionsofSection2.1withassociatedidealhyperbolictetrahedrafTigandfacepairingfromFigure2.3.IfforeachequivalenceclassofedgesinX=[iTi,theassociatededgeinvariantshaveproductoneandargumentsum2,thenthequotientX;dunderthegluingismetric,locallyisometrictoH3,andhomeomorphictoR3)]TJ/F33 11.9552 Tf 12.0542 0 Td[(W.Furthermore,theassociatedhomeomorphisminducesametricdWonR3)]TJ/F33 11.9552 Tf 11.9551 0 Td[(WsuchthatidWistopologicallyequivalenttotheeuclideanmetricofR3)]TJ/F33 11.9552 Tf 11.9551 0 Td[(W,andiiR3)]TJ/F33 11.9552 Tf 11.9552 0 Td[(WwiththemetricdWislocallyisometrictoH3.Proof.ByTheoremB.1.4andandTheoremB.1.7,XismetricandlocallyisometrictoH3.Sincetheedgeinvariantshaveproductofmodulusone,weareguaranteedbyLemmaB.1.1thatnotwoedgepointsaregluedtoeachother.BythesameargumentasinTheorem2.2.1,thequotientXmustbehomeomorphictothecomplementR3)]TJ/F33 11.9552 Tf 11.9551 0 Td[(W.Leth:R3)]TJ/F33 11.9552 Tf 10.92 0 Td[(W!XbetheassociatedhomeomorphismnotethathereR3)]TJ/F33 11.9552 Tf 10.92 0 Td[(Whasthetopologyfromtheeuclideanmetric.ThenhinducesthedesiredmetricdWon

PAGE 17

11R3)]TJ/F33 11.9552 Tf 9.3832 0 Td[(WbydeningdWP;P0=dhP;hP0.ThemaphisthenahomeomorphismfromR3)]TJ/F33 11.9552 Tf 12.7714 0 Td[(WwiththeeuclideanmetrictoXandalsoahomeomorphismfromR3)]TJ/F33 11.9552 Tf 13.1891 0 Td[(WwiththemetricdWtoX.Thus,theidentitymapi=h)]TJ/F31 7.9701 Tf 6.5865 0 Td[(1hisahomeomorphismfromR3)]TJ/F33 11.9552 Tf 12.933 0 Td[(WwiththeeuclideanmetrictoR3)]TJ/F33 11.9552 Tf 12.9331 0 Td[(WwiththemetricdW.ByconstructionofdW,thehomeomorphismhisalsoanisometryfromR3)]TJ/F33 11.9552 Tf 12.2289 0 Td[(WwiththemetricdWtoX.SinceXislocalyisometrictoH3,R3)]TJ/F33 11.9552 Tf 12.4894 0 Td[(WwiththemetricdWislocallyisometrictoH3aswell. Figure2.6:DecomposinganIdealOctahedron Figure2.7:Top-DownViewofDecompositonThistheoremshowsthatforthemetricdWonanalternatingweavecomplementR3)]TJ/F33 11.9552 Tf 12.208 0 Td[(Wtosatisfyand2,weneedonlycheckthattheedgeinvariantsaroundeachedgehaveproductoneandargumentsum2.

PAGE 18

12 Figure2.8:ParametrizingIdealOctahedraAlongaStrandTocheckthesetwoconditionsalonganequivalenceclassofedges,wecanin-spectthelinksdenitioninSectionA.2ofthecorrespondingidealverticesthataretheendpointsoftherelevantedges.Forexample,Figure2.9showsthelinkscorrespondingtocertainverticesthataregluedtogetherthosepulledupinthepositivez-directionwithoutbound.Theselinksaredetermineduptosimilaritybytheedgeinvariantofthetetrahedrafromwhichthelinkisobtained.Figure2.10showstheselinksarrangedsidebyside.ThetwoconditionsontheparametersfromTheorem2.3.1areequivalenttotheabilitytoarrangetheselinkswhilepreserv-ingsimilarityclassnexttooneanotherwithedgesgluedtogetherconsistentlyandanglesaroundeachvertexaddingto2. Figure2.9:OctahedraWithSomeLinksAsanotherexample,supposeFigure2.11isaportionofthecrossing-indicated

PAGE 19

13 Figure2.10:LinksArrangedSideBySideprojectionofanalternatingweavewithindicatedparametersinside"theregion.ThenthearrangementoftherelevantlinksisshowninFigure2.12andtheconditionaroundthisvertexwillread4Yi=1zi=1and4Xi=1argzi=2:Thisappliestoeveryequivalenceclassofedges,andsincetheedgeinvariantsassociatedwitheachsuchequivalenceclassappeartogetherinsomelinkitsucestojustcheckthelinksofequivalenceclassesofverticesgluingoflinksofidealverticesaccordingtofacepairingoftetrahedraforconsistentgluingandanglesaddingto2.Therearethreetypesoftheselinksthatwemustconsider,dependingonthetypeofthecorrespondingequivalenceclassofidealvertices.Thethreetypesofverticesarethosecorrespondingtoastrandoftheweaveallidealverticesincidenttoastrandareidentied,thosepulledinthepositivez-directionwithoutboundandthosepulledinthenegativez-directionwithoutbound.Werefertothesetypes

PAGE 20

14 Figure2.11:EdgeInvariantsInsideaRegionoflinksasstrandlinks,thenorthernplane,andthesouthernplane,respectivelytopologically,thestrandlinksarecylinders,andthenorthern/southernplanesareplanes.Wealsorefertotheidealverticesofthecorrespondingequivalenceclassesasstrandvertices,northernvertices,andsouthernvertices,respectively.Figures2.9and2.10correspondtothenorthernplane,andFigures2.13and2.14correspondtoastrandlinkwithparametrizationfromFigure2.8notethatthehyperbolicconditionsassociatedwiththerepoleedgesareincludedintheconditionsfromthestrandlinkinFigure2.14.CompletenessofthequotientXismorediculttocheck,soweproceedwiththespecialcasethatWisadoublyperiodicweave.Oneessentialingredientforcompletenessofthequotientiscompletenessofeverylinkofequivalenceclassofidealvertices,asmadeprecisebyconditionsiandii

PAGE 21

15 Figure2.12:ArrangementofLinksFromInsideaRegionofTheoremB.2.2.Forthestrandlinks,thiscompletenessconditionisjustthatthelinkisacompleteEuclideancylinderortorus.TheconditionfortheportionofthelinkofthestrandinFigure2.13tobepartofacompleteEuclideancylinderortorusisequivalenttotheparameterssatisfying)]TJ/F16 11.9552 Tf 15.9216 8.0878 Td[(1 u11 1)]TJ/F33 11.9552 Tf 11.9551 0 Td[(u2=1 1)]TJ/F33 11.9552 Tf 11.9551 0 Td[(v3)]TJ/F16 11.9552 Tf 15.4199 8.0877 Td[(1 v4and1 1)]TJ/F33 11.9552 Tf 11.9551 0 Td[(v1)]TJ/F16 11.9552 Tf 15.42 8.0877 Td[(1 v2=)]TJ/F16 11.9552 Tf 16.7743 8.0877 Td[(1 w31 1)]TJ/F33 11.9552 Tf 11.9552 0 Td[(w4:SeethediscussionafterLemmaA.3.2inAppendixAfordetailsontheformulasforcalculatingtherelevantedgeinvariants.Therstconditionensuresthatthequadrilateralinthisportionofthelinkobtainedbyconnectingtheheadsofthe

PAGE 22

16 Figure2.13:OctahedrawithCorrespondingStrandLink Figure2.14:APortionofaStrandLinksinglearrowededgesandthenthetailsofthesinglearrowededgesisaparallelo-gram.Similarly,thesecondconditionensuresthatthequadrilateralfromthedoublearrowededgesformsaparallelogram.Ifthesestrandequationsaresatisedalongtheentirestrand,thenthelinkofthatstrandiscomplete.ByCorollaryB.2.4,weneedonlycheckthestrandequationsandthecomplete-nessofthenorthern/southernplanesforadoublyperiodicalternatingweavewithparametersrespectingthisperiodicity.Incheckingthenorthernandsouthernplane,wenotethattherearetwotypesofverticesintheselinks.Thersttypeliesattheintersectionoftwoquadrilateralscomingfromasingleidealoctahedron.Ifthestrandequationsaresatisedalong

PAGE 23

17thestrandsoftheweave,thenthehyperbolicconditionsassociatedwiththesetypesofverticesaresatisedforfree.ThesecondtypeiscomposedofthoseverticesthatlieatthecornersofthetriangleswheretheparametersarelabelledasinFigure2.12.Thestrandequationsdonottakecareofthesevertices,however,andwestillmusthavetheproductofallparametersinside"thecorrespondingregionoftheprojectiontomultiplytooneandhaveargumentssumto2.2.4BigonsThetopologicalconstructionabovealsoappliestoalternatingweaveswithbigonregionsintheprojection,buttherewillbeproblemswhentryingtoputacompletehyperbolicstructureonthecomplement.Inparticular,therewillbeanedgeinthequotientwithexactlytwotetrahedrathoseinside"thebigonregiongluedaroundit.Toavoidanydicultiesfromanedgeinvarianthavingargument,weproceedwithaminorchangeintheconstruction.Weplaceanidealoctahedronateachcrossingexceptforthosecrossingsincidentwithabigon.Atcrossingsincidentwithabigon,placeanidealoctahedronwithoneidealtetrahedronremoved.Thisplacement,alongwiththeassociatededgeinvariants,isshowninFigure2.15.Recallthatallbigonsareisolated,sothatweareremovingatmostonetetrahedronfromeachoctahedron.ThefacepairingsofthesenewshapesarethengivenbyFigure2.16,whileallotherfacepairingsremainthesameasintheconstructionfromtheprevioussections.TherelevantportionofthelinksfromthetwotwistedstrandsaredepictedinFigure2.17.ByinspectionofFigure2.17,thestrandequationsbecomez11z21z31z12z22z32=1;1 1)]TJ/F33 11.9552 Tf 11.9552 0 Td[(z11=1 1)]TJ/F33 11.9552 Tf 11.9552 0 Td[(z12)]TJ/F16 11.9552 Tf 9.2985 0 Td[(1 z11z21z31;

PAGE 24

18and1 1)]TJ/F33 11.9552 Tf 11.9552 0 Td[(z21=1 1)]TJ/F33 11.9552 Tf 11.9552 0 Td[(z22)]TJ/F16 11.9552 Tf 9.2985 0 Td[(1 z11z21z31:Theargumentsofthefactorsintherstequationalsomustsumto2.Allotherstrandequationsremainthesame.TheportionofthenorthernplanecorrespondingtothebigonregionisdepictedinFigure2.18.Wecanseethattheusualconditionsoftheinside"parametersmultiplyingto1applyinallregionsexcept,ofcourse,thebigonregion.Justasinthebigon-freecase,thetworemainingconditionsfromFigure2.18aresatisedifthestrandequationsaresatised.ThecasewithbigonsthatarenotisolatedcanbehandledsimilarlybyplacingidealoctahedrawithcertaintetrahedraremovedasshowninFigure2.19.Thecor-respondingpairingoffacesisthengiveninFigure2.20. Figure2.15:PlacementandParametrizationforaBigonRegion

PAGE 25

19 Figure2.16:FacePairingforaBigonRegion Figure2.17:PortionsofLinksfromBigonStrands

PAGE 26

20 Figure2.18:PortionofNorthernPlanefromBigonRegion Figure2.19:PlacementforAdjacentBigonRegions Figure2.20:FacePairingforAdjacentBigonRegions

PAGE 27

CHAPTERIIIAugmentedAlternatingWeavesInthischapterweexpandtheclassofexamplesatourdisposalbytakinganalternatingweaveandaddingcircleswhoseinteriorintersectsexactlytwostrandsoftheweave.Firstwedescribethelocalpictureofaugmentinganalternatingweavewithasinglecirclearoundacrossing.Thenwederiveconditionsunderwhichanon-alternatingdoublyperiodicaugmentedalternatingweaveadmitsacompletehyperbolicstructure.Thenweremarkonhowtogeneralizetothecasewithbigons.3.1DenitionsSupposeWisanalternatingweavesatisfyingthepropertiesfromthepreviouschapterbutwithnobigonsintheprojectionplaneP.LetC1;C2;:::benonisotopicembedded1-spheresinR3)]TJ/F33 11.9552 Tf 11.7169 0 Td[(WsuchthateachCiintersectsPinexactlytwopointswhereeachofthetwointersectionsoccurinadierentregionoftheprojectionplaneandsuchthateachCiboundsaverticaldiskDiinR3whereiDiDj=;fori6=j,iiEachDiintersectsWinexactlytwopoints.ThenwecallW[SiCianaugmentedalternatingweave.Figure3.1showsanaugmentedsquareweave.21

PAGE 28

22 Figure3.1:AnAugmentedSquareWeave3.2TopologicalConstructionLetWbeanaugmentedalternatingweaveobtainedbyaddingasinglecircleCaroundacrossingofWfreeofbigonsasinFigure3.2.Asdonepreviously,weconstructthetopologyofR3)]TJ/F33 11.9552 Tf 12.6024 0 Td[(Wusingidealpolyhedra.ProceedbyplacinganidealoctahedronateachcrossingofWasinFigure2.2.AfacepairingisthengivenfromFigure2.3,butbeforeidentifyingfaceswemustrsttakeintoaccounttheaugmentingcircle. Figure3.2:AddingaCircleAroundaCrossing.ConsidertheoctahedronOatthecrossingofWwhereCisadded.Sincetheredandblueedgesgetidentiedaboveandbelowthecorrespondingstrands,drilling

PAGE 29

23outthesegmentsofOinFigure3.3istopologicallyequivalenttodrillingoutCinthecomplementofW. Figure3.3:DrillingOutanAugmentingCircleWedesireadecompositionofOandit'sneighborsinFigure2.2intoidealtetrahedraandacorrespondingfacepairingwithneighboringoctahedrawhereCisidentiedtoanequivalenceclassofidealvertices.Toobtainsuchadecomposition,collapseCtotwoidealverticesasinFigure3.4. Figure3.4:CollapsinganAugmentingCircleTheresultingshapecontainstwothricepuncturedspheresthatcanbeattenedintoidealtriangleswithoutchangingthetopologyoftheweavecomplement.TheseidealtrianglescanthenberemovedasinFigure3.5becausethefacesoftheneigh-boringoctahedrathatarepairedtoit'soppositesidescaninsteadbepairedtoeachother.Wecalltheresultingidealpolyhedronastar.

PAGE 30

24 Figure3.5:RemovingIdealTrianglesConnectingtheidealverticescorrespondingtoCandtriangulatingthesurfaceofthestarwiththecolorededgesofFigure3.6,weobtainthedesireddecompositionofthestarintosixidealtetrahedra. Figure3.6:AMoreSymmetricStarSincewedrilledpointsoutoftheredandblueedgesinFigure3.3,wemustremovethecorrespondingpointsfromtheneighboringoctahedraaswell.Toaccountforthesenewidealvertices,theneighboringoctahedracanbedecomposedasinFigure3.7.Finally,thestarandit'sneighboringoctahedrainheritafacepairingfromthefacepairingoftheoriginalidealoctahedraofW.ThisisshowninFigure3.8.

PAGE 31

25 Figure3.7:DecomposingtheNeighborsofaStarToextendthisconstructiontoanaugmentingcirclenotaroundacrossing,therearetwocasestobeconsidered.IfthecircleisofthetypeinFigure3.9left,werstnotethatthistypecanbeobtainedbycuttingalongthediskboundedbyanaugmentingcircleofFigure3.2,performingahalf-twist,andreidentifying.Inourconstruction,thiscorrespondstocuttingalongthetwicepunctureddiskinFigure3.10,performingahalftwist,andreidentifying.Thus,toextendtheconstructiontothiscaseonesimplyhastoaddacrossingintheoriginalweave,followtheaboveconstructionwiththenewcrossingaugmented,andperformahalf-twistofthetwicepunctureddiskinthestarpriortoidentication.IfthecircleisofthetypeinFigure3.9right,thenaseparatedecompositionisrequiredwhichwewillnotdiscuss.Thisdecompositionwillalsoworkforanynumberofaugmentingcirclesthataresucientlyfarapart"intheweave.Sucientlyfarapartmeansthatthedecom-positionoftheneighborstoastarwon'tinterferewiththedecompositionoftheneighborsofanotherstar.Alternatingweaveswithaugmentingcirclesthataretooclosetogetherrequireamoreinvolveddecompositionwhichwewillnotdiscuss.

PAGE 32

26 Figure3.8:FacePairingofaStarandIt'sNeighbors

PAGE 33

27 Figure3.9:TheTwoTypesofAugmentingCircleNotAroundaCrossing Figure3.10:TwicePuncturedDiskRedinaStar3.3HyperbolicAugmentedAlternatingWeavesTheproofofTheoremB.1.7carriesdirectlyovertoaugmentedalternatingweavessothatwehavethesameconditionsonthetetrahedrathatensurewhenthecomple-mentofanaugmentedalternatingweaveWadmitsametricdWsatisfyingiandiiofTheorem2.3.1.TheproofofTheoremsB.2.2andB.2.4alsocarryover,sothatwegetthesameconditionsensuringcompletenessaswell.Todescribetheseconditionsmoreexplicitly,weproceedbyrepeatingtheanalysisfromthepreviouschapter.Inordertolistalltheconditionstogether,werestricttothecasethattheweaveisadoublyperiodicaugmentedalternatingweavewith

PAGE 34

28augmentingcirclessucientlyfarapart.Beginbyassigningedgeinvariantstoeachtetrahedroninthestar,andtheNorth,South,EastandWestneighborsaccordingtothenumberinginFigures3.11and3.12replacingzwithnfortheNorthneighbor,etc.. Figure3.11:EdgeInvariantsofaStarTheconditionsaroundtheedgesinsideouridealpolyhedrathegreenedgeinFigure3.6,forexampleareY1i6ci=1;Y1i3ni=1;Y3i6ni=1;Y1i3si=1;Y3i6si=1;Y1i3ei=1;Y3i6ei=1;Y1i3wi=1;Y3i6wi=1:Figure3.13showstherelevantportionofthelinksofthetwocenter"strandsincidentwiththestar.Fromthesediagramswecanobtaintherelevanthyperbolic

PAGE 35

29 Figure3.12:EdgeInvariantsofaNeighbortoaStarconditionsfortheselinks.Theyaren4=c2;s4=c1;e4=c5;w4=c4:IfthetetrahedraalongtheNorthern"strandarelabelledasinFigure3.14,thenFigure3.15showstherelevantportionofthelinkfromthisstrand.Thecorrespondingconditionsarethesameasthosefromthepreviouschapterwithoneparametermodied.ByinspectionofFigure3.15,therelevantconditionsfromthisstrandare)]TJ/F16 11.9552 Tf 15.9216 8.0878 Td[(1 u11 1)]TJ/F33 11.9552 Tf 11.9551 0 Td[(u2=1 1)]TJ/F33 11.9552 Tf 11.9551 0 Td[(n2[)]TJ/F16 11.9552 Tf 16.0841 8.0877 Td[(1 n31 1)]TJ/F33 11.9552 Tf 11.9552 0 Td[(n6];[)]TJ/F16 11.9552 Tf 16.0841 8.0877 Td[(1 n61 1)]TJ/F33 11.9552 Tf 11.9552 0 Td[(n3])]TJ/F16 11.9552 Tf 16.0841 8.0878 Td[(1 n1=)]TJ/F16 11.9552 Tf 15.42 8.0878 Td[(1 v21 1)]TJ/F33 11.9552 Tf 11.9551 0 Td[(v1:Figure3.16showsthelinkassociatedwiththeaugmentingcircle.Byinspection,thecorrespondingconditionsare

PAGE 36

30 Figure3.13:PortionsofLinksfromOverandUnderStrands)]TJ/F16 11.9552 Tf 16.0842 8.0878 Td[(1 n5)]TJ/F16 11.9552 Tf 15.1093 8.0878 Td[(1 c31 1)]TJ/F33 11.9552 Tf 11.9552 0 Td[(c22=1;)]TJ/F16 11.9552 Tf 15.3473 8.0878 Td[(1 s5)]TJ/F16 11.9552 Tf 15.1093 8.0878 Td[(1 c61 1)]TJ/F33 11.9552 Tf 11.9552 0 Td[(c12=1;)]TJ/F16 11.9552 Tf 15.303 8.0878 Td[(1 e5)]TJ/F16 11.9552 Tf 15.1094 8.0878 Td[(1 c61 1)]TJ/F33 11.9552 Tf 11.9552 0 Td[(c52=1;)]TJ/F16 11.9552 Tf 16.7743 8.0878 Td[(1 w5)]TJ/F16 11.9552 Tf 15.1094 8.0877 Td[(1 c31 1)]TJ/F33 11.9552 Tf 11.9552 0 Td[(c42=1;andn5s5c1c2=e5w5c4c5:Ifthetetrahedrainside"thefourregionsadjacenttotheaugmentedcrossingarelabelledasinFigure3.17,thenFigure3.18showstherelevantportionofnorthernplane.Byinspection,thecorrespondingconditionsare

PAGE 37

31 Figure3.14:ParametrizationAlongtheNorthern"NeighboringStrand Figure3.15:PortionofLinkfromtheNorthern"NeighboringStrand)]TJ/F16 11.9552 Tf 16.0842 8.0878 Td[(1 n51 1)]TJ/F33 11.9552 Tf 11.9552 0 Td[(n6)]TJ/F16 11.9552 Tf 15.3031 8.0878 Td[(1 e51 1)]TJ/F33 11.9552 Tf 11.9552 0 Td[(e6kYi=1ri=1;1 1)]TJ/F33 11.9552 Tf 11.9551 0 Td[(w5)]TJ/F16 11.9552 Tf 27.0067 8.0878 Td[(1 1)]TJ/F33 11.9552 Tf 11.9551 0 Td[(w6c31 1)]TJ/F33 11.9552 Tf 11.9551 0 Td[(n5)]TJ/F16 11.9552 Tf 16.0841 8.0878 Td[(1 n6`Yi=1ti=1;)]TJ/F16 11.9552 Tf 15.3473 8.0878 Td[(1 s51 1)]TJ/F33 11.9552 Tf 11.9551 0 Td[(s6)]TJ/F16 11.9552 Tf 16.7743 8.0878 Td[(1 w51 1)]TJ/F33 11.9552 Tf 11.9551 0 Td[(w6mYi=1ui=1;and1 1)]TJ/F33 11.9552 Tf 11.9551 0 Td[(e5)]TJ/F16 11.9552 Tf 25.5354 8.0878 Td[(1 1)]TJ/F33 11.9552 Tf 11.9552 0 Td[(e6c61 1)]TJ/F33 11.9552 Tf 11.9552 0 Td[(s5)]TJ/F16 11.9552 Tf 15.3473 8.0878 Td[(1 s6nYi=1vi=1:

PAGE 38

32Theconditionsfromthesouthernplaneareredundant,andallotherconditionsontheparametersremainthesameasinthepreviouschapter.Furthermore,thefactorsinallproductsabovemultiplyingtoonemusthaveargumentssumto2. Figure3.16:LinkofanAugmentingCircle Figure3.17:ParametrizationoftheInner"RegionsofanAugmentedCrossing

PAGE 39

33 Figure3.18:PortionofNorthernPlanefromAugmentedCrossing

PAGE 40

343.4BigonsToextendtheconstructiontothecaseofanaugmentedalternatingweavewithisolatedbigons,weconsidertwocases.ForanaugmentingcircleofthetypeinFigure3.19,themethodsdescribedintheprevioussectionsapplycrossthepiercingstrands,applyconstruction,performhalf-twistpriortoidentication.Foranaugmenting Figure3.19:AugmentingCirclewithBigoncirclearoundabigonasinFigure3.20,notethatintheconstructionfromtheprevioussections,performingafulltwistofthetwicepunctureddiskinastarresultsinamanifoldhomeomorphictotheoriginal.Therefore,wecanuntwistthestrandspiercingtheaugmentingcirclewithoutchangingthetopologyofthecomplementsothattheaugmentingcircleisofatypealreadyconsidered.Augmentingcirclesofthe Figure3.20:AugmentingCircleAroundaBigontypesshowninFigure3.21requireaseparatedecompositionandarenotconsideredhere.

PAGE 41

35 Figure3.21:AugmentingCirclesnotConsideredWenotethatthesameargumentsusedforisolatedbigonsapplytothecaseofanaugmentingcirclearoundasinglestrandfromabigoninseries.

PAGE 42

CHAPTERIVConclusionInthisthesiswehavedescribedaconstructionthatgivesametricdWonanalternatingweavecomplementR3)]TJ/F33 11.9552 Tf 11.9552 0 Td[(WsuchthatidWistopologicallyequivalenttotheeuclideanmetricofR3)]TJ/F33 11.9552 Tf 11.9551 0 Td[(W,iiR3)]TJ/F33 11.9552 Tf 11.9551 0 Td[(WwiththemetricdWislocallyisometrictoH3,andiiidWiscomplete.Thenweextendedourresultstocertainnon-alternatingaugmentedalternatingweaves.Thereareanumberofpossibleavenuesforfurtherrenementanddevelopmentofthesetopics.WeconjecturethatconditioniiiinTheoremB.2.2canbeweakenedbutcannotbeeliminatedwithoutsomeconditiontoreplaceit.Thoughitiseasyenoughtocheckfordoublyperiodicweaves,itwouldcertainlybedesirabletohaveamorenaturalreplacementconditionthatiseasiertocheckforensuringcompletenessofdWonanarbitraryweavecomplement.Nowhereinthisthesishavewementionedamethodforconstructinganexplicithyperbolicstructureintermsofacollectionofedgeinvariantsonagivenweavecomplement.Furtherworkinthisdirectionwouldshedlightonthequestionofwhichweavecomplementsadmitahyperbolicstructure.36

PAGE 43

37Itisstillanopenquestionwhethertheweavecomplementsadmittingahyperbolicstructurearerigid,thatiswhethertherearemultipleisometricallydistincthyperbolicstructuresonagivenweavecomplement.

PAGE 44

APPENDICES38

PAGE 45

39APPENDIXAParameterizaitonofIdealHyperbolicTetrahedraThisappendix1introducestheparameterizationofidealhyperbolictetrahedraviacomplexnumbers.Weusethefactsthatorientation-preservingsimilaritiesofCarefunctionsoftheformfz=az+bwherea;b2Canda6=0.Unlessotherwisenoted,weworkintheupperhalf-spacemodelofH3'CR+andwrite^C=C[f1g.A.1Linear/AntilinearFractionalMapsandHyperbolicIsometriesWebeginbyrecordingaresultwhichrelatestheisometriesofhyperbolicspaceH3tothelinearfractionalmaps:^C!^C,z=az+b cz+d,andantilinearfractionalmaps:^C!^C,z=az+b cz+donitsboundary^C.TheoremA.1.1.Everylinearorantilinearfractionalmap:^C!^Chasauniquecontinuousextension^:H3[^C!H3[^CwhoserestrictiontoH3isanisometryofH3.Furthermore,everyisometryofH3isobtainedinthisway.Proof.SeeBonahon[4]. TheproofofTheoremA.1.1reliesonthefactthateverylinearorantilinearfractionalmapcanbewrittenasthecompositionofreectionsinnitelymanyoflinesandcirclesin^C,andeachofthesefactorsextendstoareectioninasphereor 1MuchofthecontentofthisappendixhasbeenobtainedfromRatclie[10].

PAGE 46

40planeorthogonaltoC.ThenthereectionsinthesespheresrestricttoisometriesofH3.A.2IdealHyperbolicTetrahedraSupposeTisanidealtetrahedroninH3andletbeahorospherebasedatanidealvertexofTthatdoesnotintersecttheoppositesideofTahorospherebasedatanidealvertexv2CisaeuclideansphereinH3tangenttoCatvorifv=1aplaneinH3paralleltoC.ThenLv=TisaEuclideantriangle,calledthelinkofvinT.AscanbeseenfromFigureA.1,theorientationpreservingsimilarityclassofLvdoesnotdependonthechoiceof. FigureA.1:AnIdealTetrahedroninUpperHalfSpaceTheoremA.2.1.TheorientationpreservingsimilarityclassofthelinkLvofavertexvofanidealtetrahedronTinH3determinesTuptoorientationpreserving

PAGE 47

41isometry.Proof.Weassume,withoutlossofgenerality,thatv=1.ThentheotherthreeverticesofTformatriangleinCthatisintheorientationpreservingsimilarityclassofLv.SeeFigureA.1.SupposeT0isanotheridealtetrahedroninH3,withavertexv0suchthatLvissimilartoLv0.Afterarrangingforv0=1,thereisanorientation-preservingsimilarityfofCsendingthetrianglefromTtothetrianglefromT0.Thenfisoftheformfz=az+b,andextendstocontinuouslytoamap^f:H3[^C!H3[^Cwhichrestrictstoanorientation-preservingisometryofH3.Bycontinuityof^fandthefactthatitsrestrictiontoH3isanisometry,wehavethat^fsendsTtoT0,andthatthesetwotetrahedraareisometric. FigureA.2:TheDihedralAnglesofaTetrahedronTheoremA.2.2.LetTbeanidealtetrahedroninH3.ThenTisdetermined,uptoisometry,bythethreedihedralangles;;oftheedgesincidenttoavertexofT.Moreover,++=andthedihedralanglesofoppositeedgesareequal.Furthermore,if;;arepositive,realnumberssuchthat++=,thenthere

PAGE 48

42isanidealtetrahedroninH3whosedihedralanglesare;;.Proof.LetvbeanidealvertexofT.Bytheprevioustheorem,Tisdetermined,uptoisometry,bythesimilarityclassofLv,whichinturnisdeterminedbythedihedralangles;;oftheedgesofTincidenttov.ToseethatthedihedralanglesoftheoppositesidesofTareequal,labelthedihedralanglesofTasinFigureA.2.Thenwehave++=+0+0=0++0=0+0+=:Byaddingthersttwoandthelasttwoequations,weobtain2++0++0=20++0++0=:Therefore,=0.Thesameargumentshowsthat=0and=0.Let;;bepositiverealnumberssuchthat++=.Thenthereisatriangle4inCwithangles;;.LetTbetheidealtetrahedroninH3whoseverticesaretheverticesof4and1.Thenthelinkof1inTissimilarto4.Hence,TisanidealtetrahedroninH3whosedihedralanglesare;;. ItfollowsthattheorientationpreservingsimilarityclassofthelinkLvofavertexvofTdoesnotdependonthechoiceofv.AgeometricexplanationofthisfactisthatthegroupoforientationpreservingsymmetriesofTactstransitivelyonthesetofverticesofT.

PAGE 49

43A.3ParameterizationofEuclideanTrianglesinCWebegintheparameterizationofidealhyperbolictetrahedrabyrstparameter-izingEuclideantrianglesinC.Let4u;v;wbeaEuclideantriangleinthecomplexplaneCwithverticesu;v;wlabelledcounterclockwisearound4.Toeachvertexof4weassociatetheratioofthesidesadjacenttothevertexinthefollowingmanner.zu=w)]TJ/F33 11.9552 Tf 11.9552 0 Td[(u v)]TJ/F33 11.9552 Tf 11.9551 0 Td[(u;zv=u)]TJ/F33 11.9552 Tf 11.9552 0 Td[(v w)]TJ/F33 11.9552 Tf 11.9552 0 Td[(v;zw=v)]TJ/F33 11.9552 Tf 11.9551 0 Td[(w u)]TJ/F33 11.9552 Tf 11.9551 0 Td[(w:Thecomplexnumberszu,zvandzwarecalledthevertexinvariantsofthetriangle4u;v;w.SeeFigureA.3. FigureA.3:TheVertexInvariantzuoftheTriangle4u;v;wLemmaA.3.1.Thevertexinvariantszu,zvandzwdependonlyontheori-entationpreservingsimilarityclassofthetriangle4u;v;w.Proof.AnarbitraryorientationpreservingsimilarityofCisoftheformx7!ax+bwitha6=0.Observethatzau+b=aw+b)]TJ/F16 11.9552 Tf 11.9552 0 Td[(au+b av+b)]TJ/F16 11.9552 Tf 11.9552 0 Td[(au+b=aw)]TJ/F33 11.9552 Tf 11.9552 0 Td[(u av)]TJ/F33 11.9552 Tf 11.9551 0 Td[(u=zu: LemmaA.3.2.Letzubeavertexinvariantofatriangle4u;v;w.ThenImzu>0andargzuistheangleof4u;v;watu.

PAGE 50

44Proof.DeneasimilarityofCbyx=x v)]TJ/F33 11.9552 Tf 11.9552 0 Td[(u)]TJ/F33 11.9552 Tf 23.5007 8.0878 Td[(u v)]TJ/F33 11.9552 Tf 11.9552 0 Td[(u:Thenu=0,v=1,andw=zu.Aspreservesorientation,thetriangle4;1;zuislabelledcounterclockwise.SeeFigureA.4.HenceImzu>0,andargzuistheangleof4;1;zuatu. FigureA.4:TheTriangle4;1;zuItisevidentfromFigureA.4thatzudeterminestheorientationpreservingsimilarityclassof4u;v;w.Consequentlyzudetermineszvandzw.ByLemmaA.3.1,wecancalculatezvandzwfromthetriangle4;1;zu.Thisgivestherelationshipszv=1 1)]TJ/F33 11.9552 Tf 11.9551 0 Td[(zu;zw=1)]TJ/F16 11.9552 Tf 21.093 8.0877 Td[(1 zu:TheoremA.3.3.Let4u;v;wbeaEuclideantriangleinC,withverticeslabelledcounterclockwiseandletz1=zu,z2=zv,andz3=zwbeitsvertexinvariants.Thenz1;z2;z3satisfytheequationsiz1z2z3=)]TJ/F16 11.9552 Tf 9.2985 0 Td[(1,andii1)]TJ/F33 11.9552 Tf 11.9551 0 Td[(z2+z1z2=0.

PAGE 51

45Conversely,ifz1;z2;z3areinCwithImzi>0andsatisfyiandii,thenthereisaEuclideantriangle4inCthatisuniqueuptoorientationpreservingsimilaritywhosevertexinvariantsareincounterclockwiseorderz1;z2;z3.Proof.Bythetwopreviousformulas,wehavez1z2z3=z11 1)]TJ/F33 11.9552 Tf 11.9552 0 Td[(z1)]TJ/F16 11.9552 Tf 15.3093 8.0877 Td[(1 z1=)]TJ/F16 11.9552 Tf 9.2985 0 Td[(1:Asz2=1 1)]TJ/F34 7.9701 Tf 6.5865 0 Td[(z1,wehavez2)]TJ/F33 11.9552 Tf 12.5745 0 Td[(z1z2=1.Conversely,supposethatz1;z2;z3areinCwithImzi>0andsatisfyequationsiandii.Thenthevertexinvariantsof4;1;z1arez1;z2;z3. A.4ParameterizationofIdealHyperbolicTetrahedraWecannowparametrizetheidealtetrahedrainH3.LetvbeavertexofanidealtetrahedroninH3,withthecorrespondingvertexinvariantsz1;z2;z3ofthelinkofv.ThenoppositeedgesofThavethesamelabel.Thethreeparametersz1;z2;z3areindexedaccordingtotheright-handrulewithyourthumbpointingtowardsavertexofT.SeeFigureA.5.Thecomplexparametersz1;z2;z3arecalledtheedgeinvariantsofT.TheoremA.4.1.Letz1;z2;z3becomplexnumberswithImzi>0satisfyingz1z2z3=)]TJ/F16 11.9552 Tf 9.2985 0 Td[(1;and1)]TJ/F33 11.9552 Tf 11.9551 0 Td[(z2+z1z2=0:ThenthereisanidealtetrahedroninH3,uniqueuptoorientationpreservingisom-etry,whoseedgeinvariants,inright-handorder,arez1;z2;z3.Proof.ThisfollowsimmediatelyfromTheoremsA.2.1andA.3.3.

PAGE 52

46 FigureA.5:TheEdgeInvariantsofanIdealTetrahedronAsnotedabove,onecancalculatethevertexinvariantsofatriangleinCpro-videdthatoneisalreadygiven.Itthenfollowsthatoneneedonlyspecifyasingleedgeinvariantofanidealtetrahedroninordertodeterminethetetrahedronuptoorientationpreservingisometry.Thisjustiesouruseofasingleedgeinvariantforeachtetrahedroninthedecompositionofaweavecomplement.

PAGE 53

47APPENDIXBHyperbolicGluingandCompletenessWehaveseenaconstructionwhichbuildsthetopologyofaweavecomplementfromtopologicalidealoctahedra.Wewishtoendowtheweavecomplementwithamet-ricwhichistopologicallyequivalenttotheeuclideanmetricinthesensethattheidentitymapisahomeomorphismandlocallyisometrictothemetricofhyperbolicspace.Thisisdonebybuildingtheweavecomplementfromgeometric,i.e.hyper-bolic,idealoctahedra.InSectionB.11,wediscusstheconditionsontheoctahedrawhichensurethatourconstructiongivesametricwiththesetwoproperties.InSec-tionB.2wegiveconditionswhichensurethemetricarisingfromourconstructioniscomplete.Weworkintheupperhalf-spacemodelofH3throughoutanddenotethehyperbolicmetricbydh.Furthermore,weusethefactthatifz1;z2;z3andw1;w2;w3aretriplesofdistinctpointsin^C,thenthereisauniquelinearantilin-earfractionalmapoftheformz=az+b cz+dz=az+b cz+dsuchthatzi=wi,for1i3.B.1HyperbolicGluingBeginwithanalternating2weavesatisfyingthepropertiesofsection2.1,andassociateahyperbolicidealoctahedronwitheachcrossingoftheprojection.De1ManyargumentsweretakenfromBonahon[4],whichdealswithgluingtheedgesofasinglepolygon.2Ourargumentsworkforanaugmentedalternatingweavealso,butforthesakeofconcretenessweassumeourweavealternates.

PAGE 54

48composingeachoctahedronintofourtetrahedragivesacollectionfTigofdisjointhyperbolicidealtetrahedraafterseparatingthetetrahedrawithacorrespondingfacepairingfromthetopologicalconstructionandtheoctahedraldecompositions.Inordertodeneametricontheweavecomplement,rstdeneanextendedmetricdametricwhichtakesvaluesintheextendedrealnumbersonX=STi.ForpointsP;QinthesametetrahedronT,denedP;QasthehyperbolicdistancebetweenPandQinH3.ForP;Qindierenttetrahedra,denedP;Q=1.Thefactthatdisanextendedmetricisimmediate.NextindexthefacesofthetetrahedrasotheycanbegroupedtogetherintopairsfF1;F2g;fF3;F4g;:::consistentwiththefacepairingabove.Sinceeachfaceisanidealtriangleahyperbolictrianglewithverticesatinnityandidealtrianglesareisometricinhyperbolicspace,thereisanorientation-preservingisometry2k)]TJ/F31 7.9701 Tf 6.5865 0 Td[(1:F2k)]TJ/F31 7.9701 Tf 6.5865 0 Td[(1!F2kassociatedwitheachpairfF2k)]TJ/F31 7.9701 Tf 6.5865 0 Td[(1;F2kg.Bydening2kby2k=)]TJ/F31 7.9701 Tf 6.5865 0 Td[(12k)]TJ/F31 7.9701 Tf 6.5865 0 Td[(1,wehavethateveryfaceFiisgluedtoafaceFi1byanorientationpreservingisometryi:Fi!Fi1wherethe1dependsontheparityofi.DeneXtobethequotientunderthisgluing.Moreprecisely,denetheelementsP2Mbythefollowing:IfPisintheinteriorofatetrahedronT,thenPisnotgluedtoanyotherpointsandP=fPg.IfPisinafaceFiandnotanedge,thenPconsistsofthepointsP2FiandiP2Fi1.IfPisinanedge,thenPconsistsofallpointsoftheformikik)]TJ/F32 5.9776 Tf 5.7561 0 Td[(1i1Pwheretheindicesi1;:::;ikaresuchthatij)]TJ/F32 5.9776 Tf 5.7562 0 Td[(1i1P2Fijforeveryj.Whileweknowfromtheconstructionthateachedgeisgluedtoonlynitelymanyotheredges,weneedmoreinformationtoensurethatPisniteinthislastcaseaswell.LemmaB.1.1.SupposePisapointontheedgeEinX.Ifz1;:::;znaretheedgeinvariantsoftheedgesgluedtoE,thenPisniteifandonlyifjz1znj=1.

PAGE 55

49Proof.FirstlabeltheedgesgluedtoEbyE1;E2;:::Enwherethetetrahedracon-tainingtheedgesEiandEi+1havepairedfacestakingindicesmodn.ThenletzibetheedgeinvariantcorrespondingtoEi.Arrangethersttetrahedroncon-tainingE1inupperhalf-spacesothatit'sidealverticesare0;1;1;z1.ThenplacethetetrahedroncontainingE2besidetherst,asinFigureB.1,sothattheidealverticesofthesecondtetrahedronare0;1;z1;z1z2andthegluingmap1betweenthesetwotetrahedraistheidentity.Arrangingtherestofthetetrahedrainthisfashion,wegetthatthenthtetrahedronhasidealvertices0;1;Qn)]TJ/F31 7.9701 Tf 6.5865 0 Td[(1j=1zj;Qnj=1zjandtheisometryifor1i
PAGE 56

50 FigureB.1:ArrangingTetrahedraSideBySidethesum`dw=nXi=1dPi;Qi:WewouldliketodeneadistancefunctiondbydP;Q=inff`dw:wadiscretewalkfromPtoQgforanytwopointsP;Q2X.LemmaB.1.2.ThenumberdP;QisindependentofthechoiceofPandQusedtorepresentPandQ,anddiswelldened.Proof.ConsidertwopointsP0andQ0suchthatP0=PandQ0=Q.WeneedtoshowthatdP0;Q0=dP;Q.IfwisadiscretewalkP=P1;Q1P2;Q2P3;:::;Qn)]TJ/F31 7.9701 Tf 6.5865 0 Td[(1Pn;Qn=Q,fromPtoQ,wecanconsideranotherdiscretewalkw0oftheformP0=P0;Q0P1;Q1P2;Q2P3;:::;Qn)]TJ/F31 7.9701 Tf 6.5865 0 Td[(1Pn;QnPn+1;Qn+1=Q0bytakingP0=Q0=P0andPn+1=Qn+1=Q0.Thisnewdiscretewalkw0startsatP0,endsatQ0,andhasthesamed-length`dw0=`dwasw.Takingtheinmumoverallsuchdiscretewalksw,weconcludethatdP0;Q0,denedusingP0andQ0islessthanorequalto

PAGE 57

51dP;QusingPandQ.ExchangingtherolesofP;QandP0;Q0,wesimilarlyobtainthatdP;QdP0;Q0,andsodP;Q=dP0;Q0. NotethattheabovenumberdP;Qisnite,becauseforeverypairofpointsP;Q2TthereisadiscretewalkwdenedbyP=P1;Q1P2;Q2P3;:::;Qn)]TJ/F31 7.9701 Tf 6.5865 0 Td[(1Pn;Qn=QwithPiandQiinthesametetrahedronforeachi.Thed-length`dwisthenanitesumofniterealnumbers,andhenceisnite.Inordertoshowthatd:XX!Risinfactametric,werstprovealemmawhichstatesthatforsucientlysmall,theballBdP;isexactlytheunionoftheimagesunderoftheballsBdP0;asP0rangesoverallpointsofP.Here:X!Xisdened,asusual,byP=P.LemmaB.1.3.SupposetheequivalentconditionsinLemmaB.1.1holdforeveryequivalenceclassofedgesinX.ThenforeveryP2X,thereisan0>0suchthatforevery<0andeveryQ2X,thepointQ2XisintheballBdP;ifandonlyifthereisaP02PsuchthatdP0;Q<.Proof.Toprovetheif"partofthestatement,observethatdP;QdP;QforallP;Q2X.Toseethis,letwbethediscretewalkfromPtoQdenedbyP=P1;Q1=Q.Thenbythedenitionofd,dP;Q`dw=dP;Q.Thus,theif"partholdswithoutrestrictionon.Asfortheonlyif"partofthestatement,supposeP2X.Foranumber0whichwewillspecifydependingonthetypeofP,thatiswhethertheelementsofPareinterior,face,oredgepoints,weconsideranypointQ2XwithdP;Q<0.WewanttondapointP02PsuchthatdP0;Q<.SincedP;Q<,thereisadiscretewalkwfromPtoQoftheformP=P1;Q1P2;Q2P3;:::;Qn)]TJ/F31 7.9701 Tf 6.5865 0 Td[(1Pn;Qn=Qandwhosed-lengthissuchthat

PAGE 58

52`dw=Pni=1dPi;Qi<.Wewanttoprovebyinductionthatforeveryjn,B.1thereexistsP02PsuchthatdP0;QjPji=1dPi;Qi<:Ifwedothis,thecasej=nwillprovethelemma,sinceQn=Q.Wecanbegintheinductionwithj=1,inwhichcaseB.1istrivialbytakingP0=P.SupposeasaninductionhypothesisthatB.1holdsforj.Wewanttoshowthatitholdsforj+1.Forthis,wewilldistinguishcasesaccordingtothetypeofthepointP2X.Wewillalsospecify0ineachcase.Case1:PisintheinteriorofatetrahedroninX.Werstspecifythenumber0neededinthiscase.Wechooseitsothatthecloseddiskofradius0centeredatPiscompletelycontainedintheinteriorofthetetrahedron.Inthiscase,PistheonlypointofP.BytheinductionhypothesisB.1andbychoiceof0>,thepointQjisintheinteriorofthetetrahedron.Inparticular,itisgluedtonootherpointssothatPj+1=Qj.CombiningtheTriangleInequalitywiththeinductionhypothesisis,weconcludethatdP;Qj+1dP;Qj+dPj+1;Qj+1Pj+1i=1dPi;Qi<.ThisprovesB.1forj+1.Case2:PisinafaceFiandnotanedgeofatetrahedroninX.Inthiscase,PconsistsofPandexactlyoneotherpointiPinthefaceFi1thatisgluedtoFi.Choose1sothatPisatdistance>1fromanyfaceotherthanthefaceFithatcontainsit.Similarly,let2besuchthatiPisatdistance>2fromanyfaceotherthanthefaceFi1thatcontainsit.Choose0asthesmallerof1and2.

PAGE 59

53IfQj=Pj+1,combiningtheinductionhypothesisB.1withtheTriangleInequal-itygives,asinthecaseofinteriorpoints,dP0;Qj+1dP0;Qj+dPj+1;Qj+1j+1Xi=1dPi;Qi<;whichprovesB.1forj+1inthiscase.OtherwiseQjandPj+1aredistinctbutgluedtogether.BecausedP0;Qj<0andbychoiceof0,thesetwopointscannotbeedgepoints,sothatoneofthemisinthefaceFiandtheotheroneisinthefaceFi1gluedtoFibythemapi.Inparticular,Pj+1=1iQj.SetP00=1iP0.NotethatP00isjustequaltoPoriP;inparticularitisinP.Sinceiisanisometryandrespectsdistances,dP00;Pj+1=dP0;Qj.WethenhavethatdP00;Qj+1dP00;Pj+1+dPj+1;Qj+1dP0;Qj+dPj+1;Qj+1Pj+1i=1dPi;Qi0fromthefacesthatdonotcontainit.TheproofisalmostidenticaltothatofCase2.IfQj=Pj+1,asintheprevioustwocases,thecombinationoftheinductionhypothesisB.1andtheTriangleInequalityshowsthatB.1holdsforj+1.OtherwiseQjandPj+1aredistinctbutgluedtogether.WedistinguishcasesaccordingtowhetherQjisanedgepointornot.IfQjisanedgepoint,sincedP0;Qj<0bytheinductionhypothesis,QjmustbeinthesameedgeEasP0.SinceQjandPj+1aregluedtogether,thereisa

PAGE 60

54compositionoffacepairingisometriesik:::i1sendingtheedgeEtotheedgecontainingPj+1,andsendingQjtoPj+1.ThenP00=ik:::i1P02Pisdened.Sincethismappreservesdistances,wehavethatdP00;Pj+1=dP0;QjanddP00;Qj+1dP00;Pj+1+dPj+1;Qj+1dP0;Qj+dPj+1;Qj+1Pj+1i=1dPi;Qi
PAGE 61

55Let0beassociatedtoPbyLemmaB.1.3.SincePandQareniteanddisjoint,thereisan1>0suchthateverypointofPisatadistance>fromeverypointofQ.Set=min0;1.ThendP;Q>0.Indeed,LemmaB.1.3wouldotherwiseprovideapointP02PsuchthatdP0;Q<1,therebycontradictingthedenitionof1.Thisprovesi.Asforii,notethateverydiscretewalkfromPtoQoftheformP=P1;Q1P2;Q2P3;:::;Qn)]TJ/F31 7.9701 Tf 6.5865 0 Td[(1Pn;Qn=QprovidesadiscretewalkQ=Qn;PnQn)]TJ/F31 7.9701 Tf 6.5865 0 Td[(1;Pn)]TJ/F31 7.9701 Tf 6.5865 0 Td[(1Qn)]TJ/F31 7.9701 Tf 6.5866 0 Td[(2;:::;P2Q1;P1=P.Sincethesetwodiscretewalkshavethesamed-length,wehavedP;Q=dQ;P.Finallyforiii,consideradiscretewalkwoftheformP=P1;Q1P2;Q2P3;:::;Qn)]TJ/F31 7.9701 Tf 6.5865 0 Td[(1Pn;Qn=QgoingfromPtoQ,andadiscretewalkw0oftheformQ=Q01;R1Q02;R2Q03;:::;Rm)]TJ/F31 7.9701 Tf 6.5865 0 Td[(1Q0m;Rm=RgoingfromQtoR.Thesetwodiscretewalkscanbeconcatenatedtogivethediscerewalkw00oftheformP=P1;Q1P2;:::;Qn)]TJ/F31 7.9701 Tf 6.5865 0 Td[(1Pn;QnQ01;R1Q02;:::;Rm)]TJ/F31 7.9701 Tf 6.5865 0 Td[(1Q0mRm=RgoingfromPtoQ.Since`dw00=`dw+`dw0,takingtheinmumoverallsuchdiscretewalkswandw0,weconcludethatdP;RdP;Q+dQ;R. InordertoaddressthequestionofwhenXislocallyisometrictoH3,wenowprovetwolemmas.LemmaB.1.5.Let:T!T0beanisometrybetweentwoidealtrianglesTandT0.Thenextendstoanisometry:H3!H3ofH3.Inaddition,ifwechooseonesideofTandanothersideofT0,wecanarrangethatsendstheselectedsideofTtotheoneselectedforT0.Theisometryisthenuniquelydeterminedbytheseproperties.Proof.Bytheassumptionintheintroductionofthisappendix,thereisaunique

PAGE 62

56linearfactionalmap:^C!^Candauniqueantilinearfractionalmap:^C!^CsendingtheidealverticesofTtotheverticesofT0consistentwith.ThenbyTheoremA.1.1,thesetwomapsextendcontinuouslytotwomaps^and^ofH3[^CwhichrestricttoisometriesofH3.Bycontinuityoftheextensions^and^,andthefactthattheyrestricttoisometriesofH3,^and^bothsendTtoT0.Thisprovestheclaimofexistence.IfwechooseasideofTandT0,wecanthenarrangefortheextensiontosendthesideofTtothesideofT0bychoosingeither^or^whichwouldgiveanorientation-preservingororientation-reversingextension,respectively.ByTheoremA.1.1,anyisometrywhichextendsarisesfromtheextensionafalinearorantilinearfractionalmap,butandaretheonlytwosendingtheverticesofTtotheverticesofT0consistentwith.Thisprovesuniqueness. Asforthesecondlemma,letP2XandsupposetheequivalentconditionsinLemmaB.1.1holdforeveryedgeinX.FixansatisfyingtheconclusionsofLemmaB.1.3.Inaddition,choosesmallenoughthateachP02Pisatahyperbolicdistance>3fromanyfacethatdoesnotcontainit.Inparticular,theballsBdP0;arepairwisedisjointandareballs,half-balls,orwedgesinH3,accordingtothetypeofP02P.Here,ahyperbolicwedgeisoneofthetwopiecesofahyperbolicballBdhP0;rinH3delimitedbytwoclosedhyperbolichalf-planeswhoseboundariesintersectinacompletehyperbolicgeodesiccontainingP0.Inaddition,theTriangleInequalityshowsthattheballsBdP0;areatadistance>apart,inthesensethatdhQ0;Q00>ifQ02BdP0;andQ002BdP00;withP06=P002P.LemmaB.1.3saysthattheballBdP;isobtainedbygluingtogethertheballsBdP0;inXcenteredatthepointsP0thataregluedtoP.Let

PAGE 63

57B=SP02PBdP0;denotetheunionoftheseballs.ThissubsetBXcomeswithanaturalmetric,namelytherestrictionofthemetricd.However,wewanttodeneanewextendedmetricdBonBbysettingdBQ;Q0=dQ;Q0whenQandQ0areinthesameballBdP0;,anddBQ;Q0=1whenQandQ0areindistinctballsBdP0;andBdP0;ofB.TheadvantageofdeningthisnewextendedmetriconBisthatitisdenedwithoutreferencetopointsofXthatlieoutsideofB.ThisletsusdeneanothermetricdBonB=BdP;inadditiontod.WedothisbyconsideringdiscretewalksinBinthesamewaywedeneddforX.Briey,ifwisadiscretewalkinBdenedbyP=P1;Q1P2;Q2P3;:::;Qn)]TJ/F31 7.9701 Tf 6.5865 0 Td[(1Pn;Qn=QwhereallPi;QilieinB,thenthedB-lengthofwisthesum`Bw=nXi=1dBPi;Qi:ThenwesetdBP;Q=inff`Bw:wadiscretewalkinBfromPtoQgforanytwopointsP;Q2B.ThesameproofinLemmaB.1.2usedfordshowsthatdBiswelldened.TheproofthatdBisametricisthesameasthatfromLemmaB.1.4,withtheexceptionofthesecondhalfofpropertyi.ThisisreplacedwiththeobservationthatdR;R0dBR;R0foreveryR;R02B,sothatdQ;Q0dBQ;Q0everydiscretewalkinBisadiscretewalkinX.ThendBP;Q=0impliesP=Q,anddBisindeedametric.ThemetricsdanddBmaynotcoincideontheentireballB,becausetheremay

PAGE 64

58beashortcut"throughXbetweentwopointsmakingthemcloserinXthaninB.However,ifwerestrictattentiontoasmallenoughball,wehavethefollowingresult.LemmaB.1.6.ThemetricsdanddBcoincideontheballBdP;1 3.Proof.LetQ;Q02BdP;1 3.WealreadyobservedabovethatdQ;Q0dBQ;Q0,soitremainstoprovethereverseinequality.SinceQ;Q02BdP;1 3,wehavethatdQ;Q0<2 3bytheTriangleInequality.LetwbeadiscretewalkfromQtoQ0inXoftheformQ=Q1;Q01Q2;Q02Q3;:::;Q0n)]TJ/F31 7.9701 Tf 6.5865 0 Td[(1Qn;Q0n=Q0,andwhosed-length`dwissucientlyclosetodQ;Q0that`dw<2 3.ThenQ0i=Qi+1inXand,usingthefactthatthequotientmapisdistancenonincreasingobservedinproofofLemmaB.1.3,nXi=1dQi;Qi+1nXi=1dQi;Q0i<2 3:ArepeateduseoftheTriangleInequalitythenshowsthatdP;QidP;Q1+i)]TJ/F31 7.9701 Tf 6.5865 0 Td[(1Xj=1dQj;Qj+1<1 3+2 3=;sothatallQiareinBdP;.SincesatisestheconclusionofLemmaB.1.3,weconcludethatallQiandQ0iareinthesubsetB.IfP06=P002P,thendP0;P00>3bychoiceof,andtheTriangleInequalityshowsthatanypointoftheballBdP0;isatadistance>fromanypointofBdP00;.SincedQi;Q0i<1 3,weconcludethatQiandQ0iareinthesameballBdP0;anddBQi;Q0i=dQi;Q0i.WhatthisshowsisthatwisalsoadiscretewalkfromQtoQ0inBwhosedB-lengthisequaltoitsd-length.Asaconsequence,dBQ;Q0`dw.Sincethisholdsforeverydiscretewalkwwhosed-length`dwissucientlyclosetodQ;Q0,weconcludethatdBQ;Q0dQ;Q0.

PAGE 65

59WehaveshownthatdBQ;Q0=dQ;Q0forallQ;Q02BdP;1 3,asrequired. Wearenowreadytoprovethemainresultofthissection.TheoremB.1.7.ThemetricspaceXislocallyisometrictoH3ifandonlyifforeachedgeEinXtheedgeinvariantscorrespondingtoalledgesgluedtoEhaveproductofmodulusoneandargumentssumto2.Proof.FirstassumethatconditionsandholdforeachedgeinX,andletPbeapointinX.FixansatisfyingtheconclusionsofLemmaB.1.3.Inaddition,choosesmallenoughthateachP02Pisatadistance>fromanyfacethatdoesnotcontainit.WewillndanisometrybetweenaballBdP;1 3andahyperbolicballBdhP0;1 3forapointP0inhyperbolicspaceH3.Case1:PisintheinteriorofatetrahedroninX.Inthiscase,PisgluedtonootherpointsothatPconsistsonlyofP.ThenB=BdP;and,byourchoiceof,theballBdP;iscompletelycontainedintheinteriorofX.Inparticular,theballBdP;isthesameasthehyperbolicballBdhP;H3,anopenballinhyperbolicspaceH3.Also,therearenogluingsbetweendistinctpointsofB=BdP;,sothateveryQ2BdP;correspondstoexactlyonepointQ2BdP;.Dene:BdP;!BdhP;bythepropertythatQ=QforeveryQ2BdP;.Themapmaynotbeanisometryoverthewholeball,butweclaimthatdhQ;Q0=dQ;Q0foreveryQ;Q02BdP;1 3.Indeed,dQ;Q0=dBQ;Q0byLemmaB.1.6.SincetherearenogluingsinB,oneeasilyseesthatdBQ;Q0=dBQ;Q0.Finally,

PAGE 66

60dBQ;Q0=dQ;Q0=dhQ;Q0=dhQ;Q0.ThisprovesthattherestrictionoftotheballBdP;1 3isanisometryfromBdP;1 3;dtothehyperbolicballBdhP;1 3;dh,asrequired.Case2:PisinanedgeofatetrahedroninX.WriteP=fP1;P2;:::;PkgwithP=P1.Namely,P1;P2;:::;PkaretheedgepointsofXthataregluedtoP.LemmaB.1.3saysthattheballBdP;inXistheimageinderthequotientmap:X!XoftheunionBoftheballsBdP1;;BdP2;;:::;BdPk;inX.Becauseofourchoiceof,eachoftheballsBdPj;inthemetricspaceX;disawedgeofradiusinH3,andthesewedgesarepairwisedisjoint.Wenowneedtorearrangethesewedgesintoafullball,usingaproceduresimilartotheoneusedintheproofofLemmaB.1.1.EachPjbelongstoexactlytwofacesFijandFi0j.Wecanchoosetheindexingssothatforeveryjwith1jk,thegluingmapijsendsthevertexPjtoPj+1andthefaceFijtoFi0j+1withtheconventionthatPk+1=P1andi0k+1=i01.Wewillconstructourisometry:BdP;!BdhP;piecewisefromsuitableisometriesjofH3;dh.ByLemmaB.1.5,foreveryj,wecanextendthegluingmapij:Fij!Fi0j+1toanisometryij:H3!H3ofH3;dhthatsendsthetetrahedroncontainingthefaceFijtothesideofFi0j+1thatisoppositethetetrahedroncontainingFi0j+1.Todenej,webeginwithanyisometry1ofH3;dhandinductivelydenej+1=j)]TJ/F31 7.9701 Tf 6.5865 0 Td[(1ij=1)]TJ/F31 7.9701 Tf 6.5865 0 Td[(1i1)]TJ/F31 7.9701 Tf 6.5865 0 Td[(1i2)]TJ/F31 7.9701 Tf 6.5865 0 Td[(1ij:ByinductiononjandbecausePj+1=ijPj,themapjsendsthevertexPjtothesamepointP0=1Pforeveryj.Inparticular,theisometryjsendsthewedgeBdPj;toawedgeoftheballBdhP0;.Similary,theimageofthe

PAGE 67

61faceFi0j+1=ijFijunderj+1isequaltotheimagesofFij,underj.Bydeni-tionoftheextensionofijtoanisometryofH3,thetwowedgesjBdPj;andj+1BdPj+1;sitonoppositesidesofjFij=j+1Fi0j+1.ItfollowsthatthewedgesjBdPj;alltsidebysideandinorderofincreasingjaroundtheircommonedgethroughP0.SincetheinternalanglesofthewedgesBdP1;;BdP2;;:::;BdPk;addupto2,thewedgek+1BdPk+1;=k+1BdP1;isequalto1BdP1;.Inparticular,thetwoisometriesk+1and1ofH3sendP1=Pk+1tothesamepointP0,sendthefaceFi0k+1=Fi01tothesameidealtriangle,andsendasideofFi0k+1=Fi01tothesamesideofk+1Fi0k+1=1Fi01.BytheuniquenesspartofLemmaB.1.5,itfollowsthatk+1=1.Finally,notethatwhenQ2FijisgluedtoQ0=ijQ2Fi0j+1,thenjQ=j+1Q0.Wecanthereforedeneamap:BdP;!BdhP0;bythepropertythatQisequaltojQwheneverQ2BdPj;.Theaboveconsiderationsshowthatiswelldened.Wewillshowthatinducesanisometrybetweenthecorrespondingballsofradius1 3.Forthis,considertwopointsQ;Q02BdP;1 3.ByLemmaB.1.6andbytheTriangleInequality,dBQ;Q0=dQ;Q0<2 3.LetwbeadiscretewalkfromQtoQ0inBoftheformQ=Q1;Q01Q2;Q02Q3;:::;Q0n)]TJ/F31 7.9701 Tf 6.5865 0 Td[(1Qn;Q0n=Q0,andwhosedB-length`dBwissucentlyclosetodBQ;Q0that`dBw<2 3.Inparticular,eachdBQi;Q0iisnite,sothatQiandQ0ibelongtothesameballBdPj;.Asa

PAGE 68

62consequence,dhQi;Q0i=dhjiQi;jiQ0i=dhQi;Q0idBQi;Q0isinceeachjiisahyperbolicisometry.Then,byiteratingtheTriangleInequalityandusingthefactthatQ0i=Qi+1,dhQ;Q0nXi=1dhQi;Q0inXi=1dBQi;Q0i=`dBw:SincethisholdsforeverydiscretewalkwfromQtoQ0inBwhoselengthissucentlyclosetodBQ;Q0,weconcludethatB.2dhQ;Q0dBQ;Q0:Conversely,letbetheorientedgeodesicfromQtoQ0intheballBdhP0;1 3.RecallthatBdhP0;1 3isdecomposedintothewedgesjBdPj;1 3.Therefore,wecansplitintogeodesics1;2;:::;n,inthisorder,suchthateachiiscontainedinawedgejiBdPji;1 3.InthewedgeBdPji;1 3X,considertheorientedgeodesic0i=)]TJ/F31 7.9701 Tf 6.5865 0 Td[(1jiicor-respondingtoi.Iftheendpointsof0iarelabelledsothat0igoesfromQitoQ0i,wenowhaveadiscretewalkwfromQtoQ0oftheformQ=Q1;Q01Q2;Q02Q3;:::;Q0n)]TJ/F31 7.9701 Tf 6.5865 0 Td[(1Qn;Q0n=Q0,withdB-length`dBw=nXi=1dBQi;Q0i=nXi=1`h0i=nXi=1`hi=`h=dhQ;Q0:ItfollowsthatB.3dBQ;Q0dhQ;Q0.CombiningtheinequalitiesB.2andB.3,weconcludethatdQ;Q0=dBQ;Q0=dhQ;Q0

PAGE 69

63foreveryQ;Q02BdP;1 3.Inotherwords,inducesanisometryfromtheballBdP;1 3;dtotheballBdhP0;1 3;dh.Case3:PisinafacebutnotanedgeofatetrahedroninX.TheproofinthiscaseisidenticaltotheprooffromCase2.Thisprovesthatifconditions1andholdforeachedgeinX,thenXislocallyisometrictoH3.Toprovetheconverse,rstassumethatdoesnotholdforsomeedgeEinX.Inparticular,theedgeinvariantscorrespondingtoalledgesgluedtoEhaveproductwithmodulusdierentfromone.BytheproofofLemmaB.1.1,weconcludethateachpointPinXcorrespondingtoanedgepointPconsistofinnitelymanypointsalongE,asshowninFigureX.SinceeveryneighborhoodofapointPofthistypehasnon-compactclosure,wecanconcludethatXisnotlocallyisometrictoH3.Next,assumethatcondition1holdsforeachequivalenceclassofedgesinX,butdoesnot.SupposethattheanglescorrespondingtotheedgesgluedtoEdonotaddupto2,andxanyP2XcorrespondingtoapointP2E.ByLemmaB.1.3,thereisan>0forwhichtheballBdP;isexactlytheimageoftheballsBdP0;,whereP0rangesoverallofP.WecanfurtherarrangefortobesmallenoughsothateachP02Pisatadistance>fromthefacesthatdonotcontainit,sothatweareensuredthateachBdP0;isawedge.ForeachP02P,wecanconsiderthehyperbolicplaneP0orthogonaltoEandpassingthroughP0.TakingtheintersectonDP0=P0BdP0;givesahyperbolicdisksectorDP0withangleP0.ThesedisksectorstheninheritagluingfromthegluingofX,andtheirimageinXunderthequotientmapisahyperbolicconeCPwithradiusandconeanglePP02PP0.Everycircle"fQ2CP:dP;Q=rgfor0
PAGE 70

64ballmodelshowsthateacharchaslengthP0sinhr,givingusthetotallengthofthecircleasPP02PP0sinhr6=2sinhr.IftherewereaballaroundPthatwasisometrictoahyperbolicball,everysucientlysmallplanarcirclewouldhavelength2sinhr. B.2CompletenessWecannowgiveconditionswhichensurethatthemetricsconstructedinSectionB.1.7arecomplete,butrstweprovealemma.LemmaB.2.1.LetM;d0bemetricspace.SupposethereisasequencefCig1i=1ofcompactsubsetsinMsuchthatM=[1i=1Ciandforeachi1,Ci+1containsNCi;1,theneighborhoodofCiofradius1.ThenMiscomplete.Proof.LetfPjg1j=1beaCauchysequenceinM.Thenthereisanintegerksuchthatforeverym;nk,wehaved0Pm;Pn<1.SinceM=[1i=1Ci,thereisaC`withfP1;P2;:::PkgC`.SinceNC`;1C`+1,itfollowsthateveryPjiscontainedinthecompactsetC`+1.HencethesequencefPjg1j=1convergestosomeP12C`+1M. WerefertosuchasequencefCig1i=1asanexhaustionofMbycompactsubsets.TheconverseofLemmaB.2.1isalsotrue,thatisifMiscompletethenthereisanexhaustionofMbycompactsubsets.Wewillnotusethisconverse,however.Wearenowreadytoprovethemaintheoremofthissection.Itreducestheques-tionofcompletenessofthethree-dimensionalspaceXtoaproblemonedimensionallowerinvolvingthelinksofequivalenceclassesofidealvertices.AsdenedinAppendixA,thelinkofanidealvertexvinatetrahedronTvincidentwithvistheintersectionofasuitablyhighhorospherebasedatvwithTv.Alinkofanequiv-alenceclassofidealverticesvisthenthesurfaceobtainedbygluingtogetherthe

PAGE 71

65 FigureB.2:DistanceFromLinkEdgeToNon-incidentVertexlinksoftheidealverticesinvinthetetrahedraincidentwiththeidealverticesofv,asmadeprecisebyconditionsiandiibelow.TheoremB.2.2.SupposethatconditionsandfromTheoremB.1.7holdforeachedgeinXsothatthemetricspaceX;dislocallyisometrictoH3.Inaddition,assumethatiforeachidealvertexvinX,thereisahorosphereSvbasedatvwhichsatises:aSvandSv0aredisjointforv6=v0andSvonlyintersectsthesidesadjacenttov,bifvandvarepairedbythefacepairingisometry,thenfmapsSvtoSv,iiforeachequivalenceclassofidealverticesv,thecorrespondinglinkfSuTu:u2v;Tuthetetrahedroncontainingugiscomplete.iiithereisaconstantc>0sothatforeveryidealvertexv,thedistanceinXfromanyedgeinSvTvtothecorrespondingnon-incidentvertexinSvTvisgreaterthanc,asinFigureB.2.ThenX;discomplete.

PAGE 72

66Proof".ConsideraCauchysequencefPng1n=1inX.LetBvbetheopenhoroballbasedatvwithboundarySv.Thatis,BvconsistsofallthepointsthatareinsidethehorosphereSv.ThendeneS=[vSvandS=XS.SimilarlydeneB=[vBvandB=XB.Wesplittheproofupintotwocases.Case1:ThereareinnitelymanyPninX)]TJ/F16 11.9552 Tf 14.7523 3.022 Td[(B.WeprovethatX)]TJ/F16 11.9552 Tf 14.7586 3.022 Td[(BiscompletewiththerestrictionofthemetricfromXbyndinganexhaustionbycompactsubsets.BeginwithanysingletetrahedronT1XanddeneC1=T1)]TJ/F33 11.9552 Tf 12.6954 0 Td[(B.SinceT1)]TJ/F33 11.9552 Tf 11.9551 0 Td[(Biscompactandiscontinuous,C1iscompact.TodeneC2,weneedtondacompactsubsetofX)]TJ/F16 11.9552 Tf 14.7605 3.022 Td[(BthatcontainsNC1;1inX)]TJ/F16 11.9552 Tf 14.7523 3.022 Td[(B.ConsidertheclosedneigborhoodN1ofT1SinSofradius1.ThereareonlynitelymanytetrahedrafT1;T2;:::TkgthatintersectN1,andtheunion[kj=1Tj)]TJ/F33 11.9552 Tf 9.8318 0 Td[(BcontainstheneighborhoodNC1;cinX)]TJ/F16 11.9552 Tf 12.6289 3.022 Td[(B.WethushaveacompactsubsetofX)]TJ/F16 11.9552 Tf 14.7523 3.022 Td[(BcontainingNC1;c.NowtherearenitelymanyhorospheresassociatedwiththeidealverticesoftheseTj.BytakinganeighborhoodN2inSofradius1)]TJ/F33 11.9552 Tf 11.7701 0 Td[(cofeachoftheTjSexceptforC1S,andtakingallthetetrahedrathatintersectN1andN2,wegetnitelymanytetrahedrafT1;T2;:::;Tk;Tk+1;:::;T`g.Thentheunion[`j=1Tj)]TJ/F33 11.9552 Tf 11.0351 0 Td[(BiscompactandcontainstheneighborhoodNC1;2cinX)]TJ/F16 11.9552 Tf 13.8322 3.022 Td[(B.ByrepeatingthisprocedureonthehorospheresofTk+1;:::;T`,weobtaincompactsubsetswhichcontainNC1;3c;NC1;4c;:::inX)]TJ/F16 11.9552 Tf 13.4978 3.022 Td[(B.WecaniteratethisprocessuntilweobtainanitefamilyoftruncatedtetrahedracontainingNC1;mcwheremc<1andm+1c1.Thenrepeatingonelasttimewillgiveanitefamilyof

PAGE 73

67truncatedtetrahedrainX)]TJ/F16 11.9552 Tf 14.9508 3.022 Td[(Bwhoseunion,C2,iscompactandcontainsNC1;1inX)]TJ/F16 11.9552 Tf 14.7523 3.022 Td[(B.NowthatwehaveacompactC2thatconsistsofnitelymanytruncatedtetrahedrainX)]TJ/F16 11.9552 Tf 14.9287 3.022 Td[(S,wecanrepeattheprocedureoutlinedaboveoneachofthetruncatedtetrahedraofC2.TakingallthetruncatedtetrahedrasoobtainedwillgivenitelymanytetrahedratruncatedatSwhoseunion,C3,containsaunitneighborhoodofC2inX)]TJ/F16 11.9552 Tf 14.7523 3.022 Td[(B.RepeatingthisprocedureinductivelygivesanexhaustionofX)]TJ/F16 11.9552 Tf 15.0738 3.022 Td[(BbycompactsubsetsfCig1i=1.HenceX)]TJ/F16 11.9552 Tf 14.985 3.022 Td[(BiscompleteintherestrictionofthemetricfromX.SincethereareinnitelymanyPninX)]TJ/F16 11.9552 Tf 14.3994 3.022 Td[(B,thereisasubsequenceoffPng1n=1thatconvergestoapointP12X)]TJ/F16 11.9552 Tf 14.8817 3.022 Td[(B.ThesequencefPng1n=1isCauchy,henceitmustconvergetoP1aswell.Wenotethatforeachv,ifwechoosethehorosphereS0vthatisadistanceMclosertovthanSv,thenthesameproofofCase1willhold.Thisnewcollectionofhorosh-eresfS0vgclearlysatisespropertyi-a.IfanisometrysendsthehorosphereSutothehorosphereSv,thenitalsosendstheS0utoS0v,hencepropertyi-bissatisedaswell.Furthermore,foreachequivalenceclassofidealverticesv,thereisasimilaritybetweenthelinkLv=fSuTu:u2v;TuthetetrahedroncontainingugandthelinkL0v=fS0uTu:u2v;TuthetetrahedroncontainingugdenedbytakingapointPinLandprojectingdowntoL0viathegeodesicconnectingPtov.Thisensuresthatconditionsiiandiiiaresatisedaswell.Case2:ThereareinnitelymanyPninB.WereduceCase2toCase1byshowingthatthepointsPnareatmostadistanceMclosertotheidealverticesfromS.Wedeneafunctionh:B!Rasfollows.ForapointPinsomeBv,letQ

PAGE 74

68bethepointofSvthatisclosesttoP;thenhP=dhP;Q.ThepointQcanbeeasilyconstructedfromthepropertythatitistheintersectionofSvwiththecompletegeodesicgpassingthroughvandP.Thispropertycanbeeasilycheckedwhenv=1,andforthegeneralcasewecanconjugatebyanisometrysendingvto1.Thisfunctionhhasthefollowingtwoimportantproperties:ifP;P02Baregluedtogether,thenhP=hP0;foranytwoP;P0inthesamehoroballBv,dhP;P0jhP)]TJ/F33 11.9552 Tf 11.9552 0 Td[(hP0j.TherstpropertyisanimmediateconsequenceofthefactthatthegluingmapsareisometriesandsendeachBvtosomeBv0.ThesecondpropertyisaconsequenceoftheestimatedhP;P0jlnz0 zjforP=x;y;zandP0=x;y;z0inthecasewhenv=1.Thegeneralcasefollows,onceagain,byconjugatingbyahyperbolicisometrysendingvto1.Nowxanarbitrary,whoseprecisevaluewillnotbeimportant.Thereisanumbern1suchthatdPn;Pn+1fromS.Thus,thereisasubsequenceoffPng1n=1thatiscontainedinBandwhosetermsareatadistance>fromS.WeabusenotationandwritethetermsofthissubsequenceasPn,sincetheoriginalsquenceanditssubsequenceeitherbothdivergeorbothconvergetothesamepoint.Fornn1,consideradiscretewalkwfromPntoPn+1inXwhosed-length`dw

PAGE 75

69issucientlyclosetodPn;Pn+1that`dwhPn)]TJ/F33 11.9552 Tf 11.9552 0 Td[(>0since`dwfromthehorosphereboundingthehoroballBvthatcontainsit.Inparticular,thedistancefromQi2BvtoRiislessthanthedistancefromQitotheboundaryhorosphereSvboundingBv.ItfollowsthatRiisalsoinBv.SinceQiisgluedtoRi,andsincethegluingmapssendpointsofBtopointsofB,weconcludethatQi+1isalsoinB.Also,combiningB.4withthetwofundamentalpropertiesofh,hQi+1=hRihQi+dQi;RihPn+iXj=1dQj;Rj;andhQi+1=hRihQi)]TJ/F33 11.9552 Tf 11.9552 0 Td[(dQi;RihPn)]TJ/F34 7.9701 Tf 19.1479 14.944 Td[(iXj=1dQj;Rj:ThisprovesthatB.4holdsfori+1.

PAGE 76

70ThiscompletesourproofbyinductionthatallQiandRi)]TJ/F31 7.9701 Tf 6.5865 0 Td[(1with1ikbelongtoBandsatisfyB.4.OnemorestepinthesameproofgivesthathPn+1=hRkhQk+dQk;RkhPn+kXj=1dQj;Rj;andhPn+1=hRkhQk)]TJ/F33 11.9552 Tf 11.9552 0 Td[(dQk;RkhPn)]TJ/F34 7.9701 Tf 18.2787 14.944 Td[(kXj=1dQj;Rj;sothatjhPn+1)]TJ/F33 11.9552 Tf 11.9552 0 Td[(hPnjPkj=1dQj;Rj=`dw.SincethisholdsforeverydiscretewalkwfromPntoPn+1whoselengthissu-cientlyclosetotheinmumdPn;Pn+1,weconcludethatjhPn+1)]TJ/F33 11.9552 Tf 11.9552 0 Td[(hPnjdPn;Pn+1:AconsequenceofthisinequalityisthatthesequencefhPng1n=1inRisCauchy,andhenceconvergesinR.Thus,itisboundedbysomenumberM.ThisprovesthatthepointsPnstayatahyperbolicdistanceMfromS.Hence,theproofofCase1appliesandwearedone. CorollaryB.2.3.LetWbeanalternatingweavesatisfyingtheconditionsofSection2.1withassociatedidealhyperbolictetrahedrafTig.AssumethatthetwoconditionsofTheoremB.1.7aresatisedforeachedgeofX=STiandtheconditionsofTheoremB.2.2aresatised.ThenthemetricdWonR3)]TJ/F33 11.9552 Tf 12.1778 0 Td[(WfromCorolarry2.3.1iscomplete.Proof.ByTheoremB.2.2,themetricdonXiscomplete.SincehisanisometryfromR3)]TJ/F33 11.9552 Tf 12.083 0 Td[(WwiththemetricdWtoX,themetricdWonR3)]TJ/F33 11.9552 Tf 12.083 0 Td[(Wiscompleteaswell.

PAGE 77

71WhileitmaybediculttochecktheconditionsinTheoremB.2.2foranarbitraryalternatingweave,theyarerelativelyeasytoverifyifWisadoublyperiodicweave,thatisiftheprojectionofWcanbearrangedtohavetwolinearlyindependenteuclideantranslationalsymmetries.Forexample,thesquareweaveinFigure2.1isdoublyperiodic.CorollaryB.2.4.LetWbeadoublyperiodicalternatingweavewithparameterssatisfyingtheconditionsofTheoremB.1.7.ThemetricdWonR3)]TJ/F33 11.9552 Tf 9.7903 0 Td[(WfromCorollary2.3.1iscompleteifitheparametersrespecttheperiodicityofW,iithestandequationsofSection2.3holdforeachstrandofW,andiiithetwotilingsobtainedbyarrangingthelinksofthenorthernandsouthernverticessidebysidearecompletethatis,theybothexhibitdoublyperiodiceuclideansymmetry.Proof.Wemustcheckthatthereisachoiceofhorospheresassociatedwiththeidealverticesofthetetrahedrawhichsatisesi-iiiofTheoremB.2.2.SincetheparametersrespectthedoublyperiodicsymmetryofW,thereareonlynitelymanyisometricallydistincttetrahedra.Hence,thereisachoiceofhoropsheresrespectingthesymmetryofWthatsatisesconditioni-aofTheoremB.2.2.Nowwemustshowthatwecanchoosethehorospheressothattheyarepreservedbythefacepairingisometries,thatisthefacepairingsofthetetrahedrarestricttoedgepairingsofthelinks.WedothisbychoosinghorospheresstillrespectingthesymmetryofWclosertothecorrespondingidealvertices.Thisneitheraects-aofTheoremB.2.2norchangesthesimilarityclassesofthecorrespondinglinks.

PAGE 78

72Wehavebyassumptioniiithatwecanarrangebyscalingandpreservingsim-ilarityclassthelinksofthenorthernandsouthernverticessothattheyaregluededgetoedgeandsothattheresultingtilingsaredoublyperiodicandcomplete.Byassumptionii,wecandothiswiththelinksofthestrandverticesaswellstrandequationsandniterepeatingpatternoflinksensurescompletetiling.However,wewishtobeabletoarrangetheselinksinthisfasionwithoutscaling.SupposeTandT0aretwotetrahedrawithfacesFandF0pairedbytheisometry:F!F0andincidentwiththeidealverticesvandv0,respectively.ThenmapsthehorosphereSvtothehorosphereSv0ifandonlyifthehyperboliclengthofFSvisequaltothehyperboliclengthofF0Sv0.Thus,itsucestoshowthattheirisachoiceofhorospheressuchthateachedgeineachlinkhasthesamehyperboliclengthastheedgeinthelinktowhichitispaired.Wecanshowthisasfollows.Fixanequivalenceclassofverticesv,andletGbetheabstractgraphwithverticestheelementofvandedgesthepairsofverticeswhicharegluedbyisometries.ThenGisconnected.ConsiderthesubgraphHofGwiththesameverticesasGwithedgesthepairsofverticesthathavehorospherespreservedbythecorespondinggluingisometry.SincewehavechosenhorospheresrespectingthesymmetryofW,wecanarrangeforHtohaveasmanyedgesaspossiblebychoosinghorospheresclosertothecorrespondingidealvertices.ThesubgraphHmustbeconnectedaswell,becauseifitisnottherewillbeanedgeofGconnectingtwocomponentsofH.Byadjustingtheappropriatehoro-spherescomponentwithhorospheresfartherawayfromtheidealverticesajustedtomatchthosefromothercomponentwhicharecloseruniformlyclosertotheidealverticesandstillrespectingthesymmetryofW,wegetanotheredgeinH.ThiscontradictstheassumptionthatHhasasmanyedgesaspossible.

PAGE 79

73SinceHisconnected,thereisasequenceofidealverticesfvjgnj=1ofvwithvjgluedtovj+1andthehorosphereSvjmappedtoSvj+1bytheappropriategluingisometry.SincehorospheresofthevjareisometricallypairedandthelinksofthevjcanbearrangedtogiveaconsistentandcompletetilinginparticularequalityofthelengthsoftheedgesinthisarrangementcorrespondingtoFSvandF0Sv0,weknowthatthelengthoftheedgeFSvisequaltothelengthoftheedgeF0Sv0.Thus,thefacepairingisometrysendsthehorosphereSvtoSv0.SinceWisdoublyperiodic,weonlyhavetodothisfornitelymanyequivalenceclassesofverticestogetachoiceofhorospheessatisfyingi-aandi-bofTheoremB.2.2.Wemustalsocheckthecompletenessofthelinksofeachequivalenceclassofidealvertices.Wehaveassumedthatthearrangingofthelinkscorrespondingtoeachequivalenceclassofidealverticesgivesacompletetiling,andhavejustshowedthatthisarrangementcanbegivenbyrestrictingthefacepairingisometries.Itisclearthenthatthecorrespondingsurfacesarecomplete.ToverifyconditioniiifromTheoremB.2.2,wenoteagainthatthenorthernplaneandsouthernplaneexhibitdoublyperiodicsymmetry.Sincethismeansthereisaniterepeatingpattern,itisclearthereisaconstantcsatisfyingiiiofTheoremB.2.2.Furthermore,thereisaniterepeatingpatternforeachstrandlink,sothatthesameargumentapplies.Sincethereareonlynitelymanypossibledistinctlinks,wecanchooseaconstantsatisfyingconditioniiiofTheoremB.2.2andwearedone.

PAGE 80

BIBLIOGRAPHY74

PAGE 81

75BIBLIOGRAPHY[1]C.Adams,Augmentedalternatinglinkcomplementsarehyperbolic,Low-dimensionalTopologyandKleinianGroups,LectureNoteSeries112,CambridgeUniversityPress,1986.[2]I.Agol,Tamenessofhyperbolic3-manifolds,PreprintarXiv:math/0405568v1,2004.[3]R.BenedettiandC.Petronio,Lecturesonhyperbolicgeometry,Universitext,Springer-Verlag,Berlin,1992.[4]F.Bonahon,Low-dimensionalgeometry,StudentMathematicalLibrary,vol.49,AmericanMathematicalSociety,Providence,2009.[5]J.Brock,R.Canary,andY.Minsky,Theclassicationofnitely-generatedkleiniangroups,inpreparation.[6] ,Theclassicationofkleiniansurfacegroups,II:Theendinglaminationconjecture,PreprintarXiv:math/0412006v1,2004.[7]D.CalegariandD.Gabai,Shrinkwrappingandthetamingofhyperbolic3-manifolds,Jour.Amer.Math.Soc.19,no.2,385{446.[8]K.Knudson,J.Leach,andI.Shottland,Hyperbolicstucturesonalternatingweavecomple-ments,SMALLInternalReport,2008.[9]Y.Minsky,Theclassicationofkleiniansurfacegroups,I:Modelsandbounds,PreprintarXiv:math/0302208v3,2004.[10]J.Ratclie,Foundationsofhyperbolicmanifolds,GraduateTextsinMathematics,vol.149,Springer{Verlag,NewYork,1994.[11]D.Thurston,Hyperbolicvolumeandthejonespolynomial,Lecturenotesavailableathttp://math.columbia.edu/dpt/speaking/Grenoble.pdf,1999.


ERROR LOADING HTML FROM SOURCE (http://ncf.sobek.ufl.edu//design/skins/UFDC/html/footer_item.html)