ERROR LOADING HTML FROM SOURCE (http://ncf.sobek.ufl.edu//design/skins/UFDC/html/header_item.html)

An Evolutionary Model for the Stable Marriage Problem

Permanent Link: http://ncf.sobek.ufl.edu/NCFE004126/00001

Material Information

Title: An Evolutionary Model for the Stable Marriage Problem
Physical Description: Book
Language: English
Creator: Karr, Sarah Rose
Publisher: New College of Florida
Place of Publication: Sarasota, Fla.
Creation Date: 2009
Publication Date: 2009

Subjects

Subjects / Keywords: Interdependent Utility
Interdependent Preferences
Stable Matching
Stable Marriage
Evolutionary Economics
Behavioral Economics
Genre: bibliography   ( marcgt )
theses   ( marcgt )
government publication (state, provincial, terriorial, dependent)   ( marcgt )
born-digital   ( sobekcm )
Electronic Thesis or Dissertation

Notes

Abstract: Many variants of the Stable Marriage Problem (a one-to-one matching problem with no bearing on actual marriage) have been explored in the 46 years since the problem was first introduced. We believe our model is the first to be based on the assumption that individuals gain utility both from their own and from their partners' happiness. Participants' initial preferences are formulated the same way as in the original model. In our model, however, participants then reorder their preferences, preferring those pairings which provide the greatest total utility. All preferences are re-ordered until they cease to change (become stable). The participants are then matched via the Gale-Shapley algorithm (in accordance with these new preferences). Our most important discovery is that all (initial) sets of preferences eventually stabilize. We explore, experimentally, the relationship between group size (cardinality of each set) and how many times preferences must be reordered before stabilizing. We explain why and where our model may be applicable and use our model to help explain the disparity in age of first marriage in metropolitan versus nonmetropolitan areas. Finally, we discuss conjectures and variations for possible future study.
Statement of Responsibility: by Sarah Rose Karr
Thesis: Thesis (B.A.) -- New College of Florida, 2009
Electronic Access: RESTRICTED TO NCF STUDENTS, STAFF, FACULTY, AND ON-CAMPUS USE
Bibliography: Includes bibliographical references.
Source of Description: This bibliographic record is available under the Creative Commons CC0 public domain dedication. The New College of Florida, as creator of this bibliographic record, has waived all rights to it worldwide under copyright law, including all related and neighboring rights, to the extent allowed by law.
Local: Faculty Sponsor: Mullins, David

Record Information

Source Institution: New College of Florida
Holding Location: New College of Florida
Rights Management: Applicable rights reserved.
Classification: local - S.T. 2009 K18
System ID: NCFE004126:00001

Permanent Link: http://ncf.sobek.ufl.edu/NCFE004126/00001

Material Information

Title: An Evolutionary Model for the Stable Marriage Problem
Physical Description: Book
Language: English
Creator: Karr, Sarah Rose
Publisher: New College of Florida
Place of Publication: Sarasota, Fla.
Creation Date: 2009
Publication Date: 2009

Subjects

Subjects / Keywords: Interdependent Utility
Interdependent Preferences
Stable Matching
Stable Marriage
Evolutionary Economics
Behavioral Economics
Genre: bibliography   ( marcgt )
theses   ( marcgt )
government publication (state, provincial, terriorial, dependent)   ( marcgt )
born-digital   ( sobekcm )
Electronic Thesis or Dissertation

Notes

Abstract: Many variants of the Stable Marriage Problem (a one-to-one matching problem with no bearing on actual marriage) have been explored in the 46 years since the problem was first introduced. We believe our model is the first to be based on the assumption that individuals gain utility both from their own and from their partners' happiness. Participants' initial preferences are formulated the same way as in the original model. In our model, however, participants then reorder their preferences, preferring those pairings which provide the greatest total utility. All preferences are re-ordered until they cease to change (become stable). The participants are then matched via the Gale-Shapley algorithm (in accordance with these new preferences). Our most important discovery is that all (initial) sets of preferences eventually stabilize. We explore, experimentally, the relationship between group size (cardinality of each set) and how many times preferences must be reordered before stabilizing. We explain why and where our model may be applicable and use our model to help explain the disparity in age of first marriage in metropolitan versus nonmetropolitan areas. Finally, we discuss conjectures and variations for possible future study.
Statement of Responsibility: by Sarah Rose Karr
Thesis: Thesis (B.A.) -- New College of Florida, 2009
Electronic Access: RESTRICTED TO NCF STUDENTS, STAFF, FACULTY, AND ON-CAMPUS USE
Bibliography: Includes bibliographical references.
Source of Description: This bibliographic record is available under the Creative Commons CC0 public domain dedication. The New College of Florida, as creator of this bibliographic record, has waived all rights to it worldwide under copyright law, including all related and neighboring rights, to the extent allowed by law.
Local: Faculty Sponsor: Mullins, David

Record Information

Source Institution: New College of Florida
Holding Location: New College of Florida
Rights Management: Applicable rights reserved.
Classification: local - S.T. 2009 K18
System ID: NCFE004126:00001


This item is only available as the following downloads:


Full Text

PAGE 1

ANEVOLUTIONARYMODELFORTHESTABLEMARRIAGEPROBLEM BY SARAHROSEKARR AThesisSubmittedtotheDivisionofMathematics/Economics NewCollegeofFlorida inpartialfulllmentoftherequirementsforthedegree BachelorofArts UnderthesponsorshipofDavidT.Mullins Sarasota,FL June,2008

PAGE 3

iii Acknowledgments Thanksrstandforemostto:Dr.DavidMullins.Withouthimandhisremarkablepatience,generosity,andinsight,thispaperwouldnotexist.Icannotthankhimenough. WhenIrstcametoNewCollege,mathematicswasnotmyintendedmajor.Ichangedmymind aftertakingclasseswithProfessorMullinsandProfessorMcDonald.Bothprofessorsspentcountless hourshelpingmeunderstandconceptsandsolveproblems.Inshowingmethebeautyofmathematics,theyhavegivenmeagreatgift. Thanks,therefore,to:Dr.PatrickMcDonald,abrilliantteacherandmathematician,andamember ofmythesiscommittee. Thanksto:Dr.TarronKhemrajforagreeingtoserveonmythesiscommittee,despitenotknowing me.IamgladIhadthechancetoworkwithhim. Thanksto:Dr.CatherineElliott,myacademicsponsormyrstyearhereandthemostdedicatedprofessorI'veevermet.Herworkandintelligenceareinspiring.Hadcircumstancesallowed, shewouldhavebeenonmycommittee. Thanksto:RobertMichelson,myhighschooleconomicsteacher,whogotmeinterestedinthe subject,andwithoutwhomIwouldn'thavestudiedeconomicsincollege. Thanksto:mydad,whoewoutheretohelpmewhenIhadtomoveandprepareformybaccalaureateexamsimultaneously.Thankstobothmyparents,whohavealwaysbeenwonderfuland supportive,andwhohaven'tcomplainedtoomuchaboutmytakingtoolongtograduate.Iloveyou both!

PAGE 5

v Abstract ANEVOLUTIONARYMODELFORTHESTABLEMARRIAGEPROBLEM SarahRoseKarr NewCollegeofFlorida,2008(Classof2009) ManyvariantsoftheStableMarriageProblem(aone-to-onematchingproblemwithnobearingon actualmarriage)havebeenexploredinthe46yearssincetheproblemwasrstintroduced.Webelieveourmodelisthersttobebasedontheassumptionthatindividualsgainutilitybothfromtheir ownandfromtheirpartners'happiness.Participants'initialpreferencesareformulatedthesame wayasintheoriginalmodel.Inourmodel,however,participantsthenreordertheirpreferences, preferringthosepairingswhichprovidethegreatesttotalutility.Allpreferencesarere-ordereduntil theyceasetochange(becomestable).TheparticipantsarethenmatchedviatheGale-Shapley algorithm(inaccordancewiththesenewpreferences). Ourmostimportantdiscoveryisthatall(initial)setsofpreferenceseventuallystabilize.Weexplore, experimentally,therelationshipbetweengroupsize(cardinalityofeachset)andhowmanytimes preferencesmustbereorderedbeforestabilizing.Weexplainwhyandwhereourmodelmaybe applicableanduseourmodeltohelpexplainthedisparityinageofrstmarriageinmetropolitan versusnon-metropolitanareas.Finally,wediscussconjecturesandvariationsforpossiblefuture study. ThesisAdvisor:DavidT.Mullins Division:Mathematics/Economics

PAGE 7

TableofContents Acknowledgements ........................................ i Abstract ............................................... v Chapter1:Introduction ..................................... 1 Chapter2:TheStableMarriageProblem&Algorithm ................. 5 Chapter3:OurEvolutionaryModel ............................. 9 Chapter4:AnExample ..................................... 13 Chapter5:PropertiesoftheGale-ShapleyAlgorithm .................. 19 5.1UtilityintheGale-ShapleyStableMarriageAlgorithm.................19 5.2NumberofRoundstoCompletionintheGale-ShapleyStableMarriageAlgorithm.20 Chapter6:PropertiesofOurEvolutionaryModel .................... 21 6.1UtilityinOurEvolutionaryModel............................21 6.2RoundstoCompletioninourEvolutionaryModel...................24 Chapter7:ProofthatRankingsStabilize .......................... 29 7.1OverviewoftheProof...................................30 7.2DenitionsandNotation..................................30 7.3LemmasandTheorems...................................31 Theorem1..........................................37 Theorem2..........................................38 Theorem3..........................................40 Theorem4..........................................41 7.4Proof.............................................43 Chapter8:EconomicHistory ................................. 45 Chapter9:EconomicAspectsandImplications ...................... 49 Chapter10:PopulationDensityandMarriage ...................... 53 Chapter11:ConjecturesandVariations ........................... 59 11.1Variations..........................................59 11.2Conjectures.........................................61 AppendixA:Programs ..................................... 63 AppendixB:RepeatingAnExperiment ........................... 73 References .............................................. 75

PAGE 9

Chapter1 Introduction TheStableMarriage'problemisaone-to-onematchingproblem;ithaslittletodowithmarriage. TheproblemwasrstintroducedbyDavidGaleandLloydShapleyintheJanuary1962issueof AmericanMathematicalMonthly(GaleandShapley[1962]).TheStableMarriageProblemisbased onthefollowingpremise:Thereexisttwodisjointsetsofequalcardinality(intheGale-Shapley version,agroupofmenandagroupofwomen).Eachelementoftherstset(callthesethemen) haslistedallmembersoftheoppositeset(callthesethewomen)inorderofpreference,frommost toleastpreferred 1 .Anyelementofasetmustbepairedwithanelementoftheotherset(ina one-to-onematching).TheStableMarriageProblemisthatofpairingtheelementssuchthatfor anyindividual ,if prefers to 'scurrentpartner 2 ,then prefers 'scurrentpartnerto (this statementmustbetrueofbothgroups).FormoreabouttheStableMarriageProblem,pleasesee chapter2. SincetheStableMarriageProblemwasrstintroduced,muchresearchhasgoneintodeveloping e cientmatchingalgorithms,ndingallpossiblestablematchings,creatingdivorcedigraphs,and maximizingparticipants'utility.Afewstudieshavebeendoneonone-to-onematchingwithinterdependentutility,buttheyusedinterdependencemostlyasamechanismforcorrectingincomplete ornoisyinformation. Inthispaper,weintroduceamodelofmarriageinwhichcouplesshareutility.Weassumea linearrelationshipbetweenutilityandplacementonGale-Shapelypreferencelists.Participantscare 1 Thesepreferencesarestrictlyordered. 2 isamemberofthegroupofwhich isnotamember.

PAGE 10

2 CHAPTER1.INTRODUCTION asmuchabouttheirpartners'preferencesastheydotheirown,exceptinthecaseofties,which participantsbreakbygivingtheirownpreferencesgreaterweight.Participantsstartwithtemporary preferencelists,whichevolvebasedonthisassumptionofsharedutility.Preferenceseventuallystabilize(weprovethisinchapter7),afterwhichparticipantsarepairedviatheGale-ShapleyMatching Algorithm. InChapter2,weintroducetheStableMarriageproblem.Wediscussthealgorithm,whichGale andShapleypresentedin1962,forndingmale-optimalandfemale-optimalstablematchings.We denenotationbothforpreferencelistsandforrankinglists. Inchapter3,weintroduceourevolutionarymatchingmodelanddeneutilitywithinourmodel. WeuseanexampletoillustratebothourevolutionarymodelandtheGale-ShapleyAlgorithmin chapter4. Inchapter5,wediscussbrieysomepropertiesoftheGale-ShapleyAlgorithm.Section5.1describes utilitydistributioninstablematchingsfoundviaGale-ShapleyAlgorithm.Section5.2discusseshow longthealgorithmtakestoterminate. Chapter6coverssomepropertiesofourevolutionarypreferencemodel.Wediscussutilityinour evolutionarymodelinsection6.1.Insection6.2weexploretherelationship,inourevolutionary model,betweengroupsizeandhowlongpreferencestaketostabilize:Werunrandomsetsofpreferencesofvaryingsizesthroughourmodelviaacomputerprogram,andwerecordhowlongthese preferencesetstaketostabilize.Weobtainsomeinterestingresultsregardingthemeanandmedian numberofroundsofreorderingnecessarytoreachstability.Ourexperimentaldataisnotusefulin estimatingthemaximumnumberofroundsofreordering. InChapter7weprovethatinourmodelpreferencesalwaysstabilize(assuminganitenumber ofparticipants).Section7.1givesusanoutlineoftheproof.Wedenethetermsandnotationfor theproofinsection7.2andprovethenecessarylemmasandtheoremsinsection7.3.Theproof itselfisinsection7.4. Wethendiscusshowourmodeltsintoeconomictheory.Inchapter8,wediscusstheeconomic theoriesleadinguptoourmodel.Inchapter9,wesuggestsomeinterpretationsofourmodeland

PAGE 11

3 trytouncoverwhichaspectsofourmodelmayhaveusefulapplications.Inchapter10,wedescribe howourmodelmightexplainsomeofthevarianceinageofrstmarriageintheUnitedStates. Chapter11providessomesuggestionsforfuturestudy.Section11.1describespossiblevariations ofourmodel.Section11.2discussessomeunansweredquestionsaboutourmodelandconjectures possibleanswerstothesequestions.

PAGE 13

Chapter2 TheStableMarriageProblem& Algorithm ThetraditionalStableMarriageProblemrstappearedintheJanuary,1962AmericanMathematical Monthlyarticle,CollegeAdmissionsandtheStabilityofMarriage',byDavidGaleandLloyd Shapley.Inthispaper,GaleandShapleyintroducedandprovidedasolutiontotheStableMarriage Problem'.Theproblemisasfollows: Acertaincommunityconsistsofnmenandnwomen.Eachpersonranksthoseofthe oppositesexinaccordancewithhisorherpreferencesforamarriagepartner.Weseek asatisfactorywayofmarryingo"allmembersofthecommunity...wecallasetof marriagesunstable...ifunderitthereareamanandawomanwhoarenotmarriedto eachotherbutprefereachothertotheiractualmates.(GaleandShapley[1962]pg11) Moreformally:Therearetwodisjointsetsofcardinality n { N } .Inthistraditionalpresentation, welabelonegroupwomen'andtheothermen'. 1 Eachperson'(eachelementofaset)isassigned anumber { m | m N 1 m n } ,uniquewithinthatperson'sset.Inthetraditionalversionof thisproblem,eachelementofeachset(eachwomanorman)constructsapreferencelist'bystrictly orderingeachoftheelementsoftheotherset(eachmanorwoman)inorderfrommosttoleast preferred.Forexample:for n =4ifawoman'srstchoiceisman1,secondchoiceisman4,third choiceisman2,andfourthchoiceisman3,herpreferencelistwillbeasfollows:[1 4 2 3]Awoman 1 Obviously,thetwogroupsneednotbemen'andwomen'(theGale-Shapleyalgorithmactuallyusedbythe NationalResidentsMatchingProgramtomatchhospitalswithmedicalstudentsapplyingforresidencies.Wewill explainandexpandonthisapplicationelsewhere).Theproblemistraditionallyreferencedasthestablemarriage' problem,however,thuswecontinueinthistradition.

PAGE 14

6 CHAPTER2.THESTABLEMARRIAGEPROBLEM&ALGORITHM (man)issaidtoprefer'man(woman) toman(woman) ifandonlyifman(woman) precedes man(woman) onthewoman's(man's)preferencelist.Wewillencloseallpreference'listsin squarebrackets.Whenworkingwithournew,evolutionary'model,wewillhavetheparticipants createrankinglists'insteadofpreferencelists.Rankinglistspresentthesameexactinformationas preferencelists,butdosoinadi" erentformat. Tocreaterankinglists:Eachmemberofthewomen's(men's)grouprankseachofthemembers ofthemen's(women's)group,labelingher(his)rstchoice1',her(his)secondchoice2',andso on.Usingourearlierexample:For n =4ifawoman'srstchoiceisman1,secondchoiceisman4, thirdchoiceisman2,andfourthchoiceisman3,herrankinglistwillbeasfollows: (1 3 4 2)(correspondingtomen1,2,3,and4respectively) 2 Wewilldi" erentiatebetweenpreferencelistsandrankinglistbyenclosingtheformerinsquare bracketsandenclosingthelaterinparenthesis.Whileournewrankings'listformatmaybemore confusingthanthepreference'listformat,useoftherankings'formatwilleasetheexecutionof someofouralgorithms. 3 Inaonetoonematching,M,betweenthesetofwomenandthesetof men,thefollowingnotationisusedtosignifythatwoman y andman x arepartners(Guseld& Irving[1995]pg6): p M (woman y )=man x woman y 'spartnerundermatchingMisman x p M (man x )=woman y man x 'spartnerundermatchingMiswoman y Notethatthesetwostatementsareequivalent,asthisisaonetoonematching.Amatching,M,is saidtobeunstableifandonlyifthereexistmanxandwomanysuchthat p M (woman y ) # =man x and manxprecedes p M (woman y )onwoman y 'spreferencelist 4 2 Reminder:thisrankinglistisequivalenttothepreferencelist[1,4,2,3] 3 Sincetherankings'andpreference'listformatspresentthesameinformation,wenotethatwecanalwaysconvert betweenthetwo. 4 ThisisequivalenttosayingWoman y givesalower(better)rankingtoman x thanshedoesto p M (womany). Wearepresentingtheoriginalproblem,however,soweareusingtheoriginalnotation.

PAGE 15

7 and woman y precedes p M (man x )onman x 'spreferencelist. 5 Inthiscase,man x andwoman y arecalledablockingpair,'as x and y wouldbehappiertogether thanwiththeircurrentpartners. Ifamatchingisnotunstable,itissaidtobestable. Thestablemarriageproblemisthatofdesigninganalgorithmthatwillalwaysndastablematching. Intheirpaper,GaleandShapleyprovidedthefollowingalgorithmforndingastablematching: [L]eteachboyproposetohisfavoritegirl.Eachgirlwhoreceivesmorethanoneproposal rejectsallbutherfavoritefromamongthosewhohaveproposedtoher.However,she doesnotaccepthimyet,butkeepshimonastringtoallowforthepossibilitythat someonebettermaycomealonglater.Wearenowreadyforthesecondstage.Those boyswhowererejectednowproposetotheirsecondchoices.Eachgirlreceivingproposals choosesherfavoritefromthegroupconsistingofthenewproposersandtheboyonher string,ifany.Sherejectsalltherestandagainkeepsthefavoriteinsuspense.We proceedinthesamemanner.Thosewhoarerejectedatthesecondstageproposeto theirnextchoices,andthegirlsagainrejectallbutthebestproposaltheyhavehadso far.(GaleandShapley[1962]pg12) Thisalgorithm,calledtheGale-Shapleyalgorithmyieldsthemale-optimal'stablematching.The matchingiscalledmale-optimalbecauseinallotherstablematchings,themenndthemselves eitherwiththesamepartnersasinthemale-optimalmatching,orwithpartnerslowerontheir preferenceliststhanthepartnersinthemale-optimalmatching.Switchingthemenandwomenin thealgorithm,wecanndafemaleoptimal'stablematching.(GaleandShapley[1962]pp13-14) 5 ThisisequivalenttosayingMan x givesalower(better)rankingtowoman y thanhedoesto p M (manx).

PAGE 17

Chapter3 OurEvolutionaryModel Ourmodelassumesthateachparticipant'srankings(and,byourutilityfunction,eachparticipant's utility)evolvedependingonalltheotherparticipants'rankings(withparticipantspreferringhappy partners,ceterisparibus).Intraditionaleconomics,weassumeallindividualsaremotivatedexclusivelybyself-interest.Whydoweseenocontradictionbetweenself-interestandinterestinahappy partner? Anindividual'sdesirabilityasapartnerdependsonhisorherbehavior.Anindividual'sbehaviormayvarydependingonhowhappytheindividualiswithhisorherpartnership.Therefore,a person'sdesirabilityasapartnermaydependonhisorherlevelofsatisfactionwiththepartnership. Peopleinourmodelpreferfortheirpartnerstobehappy,notoutofselessness,butbecausehappy partnersbehavebetter. 1 Inourmodel,wedenealinearrelationshipbetweenutilityandtherankings,asfollows: 2 Equation1 Individual y 'scontributionto x and y 'sJoint-Utility= n (rankingofperson x on y 'slist) 1 Forfurtherdetails,pleaseseechapter9. 2 Itisworthyofnotethatourchoiceofalinearrelationship,betweenutilityandthepartners'positionsoneach othersrankinglists,isarbitrary.Forexample,wecouldjustaseasilyhavedenedutilityas:Utility=(placeonlist) n where n< 1 or ( n ) ( placeonlist)where0
PAGE 18

10 CHAPTER3.OUREVOLUTIONARYMODEL Weassumethatutilityisshared,i.e.thetotalutilityofaparingisequaltothesumoftheutility providedbyeachperson: Equation2 Equation2.a Joint-Utility(matchingwoman A andman B ) =Woman A 'scontributiontojoint-utility+ Man B 'scontributiontojoint-utility But,byequation1,thisisequivalenttosaying: Equation2.b =[ n (rankingofman B onwoman A 'slist)] +[ n (rankingofwoman A onman B 'slist)] Additioniscommutative,so: Equation2.c =2 n [(rankingofman B onwoman A 'slist) +(rankingofwoman A onman B 'slist)] E.g.,for n =4,ifwoman1listsman1asherthirdchoice,andman1listswoman1ashissecond choice,thejoint-utilityfrompairingman1andwoman1isequalto: (4 $ 3)+(4 $ 2)=1Util+2Utils=3Utils Inboththetraditionalmodelandinournewevolutionarymodel,eachpersondevelopshis(her) owninitialrankinglistwhilehe(she)isblindtoeveryoneelse'srankinglists.Inthetraditional model,everyoneisimmediatelymatchedinaccordancewiththoseinitiallists.Intheevolutionary' ordating'model,theparticipantsmeeteachotherandre-ordertheirrankingsbasedonthejointutilityofeachpotentialmatch.Incaseswhereaman(woman)hastwopossiblematcheswiththe sameutility,he(she)willprefertheone,whichhe(she)wouldhavepreferredonthepriorround. Thewomenandmencontinuetoreordertheirrankingsinaccordancewiththismethoduntilthe

PAGE 19

11 rankingsarestable'(i.e.untilreorderinginthismannernolongerchangestherankinglists).The menandwomenarethenmatchedviatheGaleShapleyAlgorithm.

PAGE 21

Chapter4 AnExampleIllustratingOur EvolutionaryModel Westartwithtworankingsmatrices':oneforthemenandoneforthewomen.Toaidinevaluating sharedutility,wesetupthematricessothateachrowrepresentsaman'srankinglistandeach columnrepresentsawoman'srankinglist.Forexampleiftherankingsmatricesare: MenWomen ! ! 312 132 132 ! ! ! ! ! 333 122 211 ! ! Man1'srankinglistis(3,1,2),i.e.hisrstchoiceiswoman2,hissecondchoiceiswoman3and histhirdchoiceiswoman1.Man2andMan3'srankinglistsareboth(1,3,2).Becausethewomen arerepresentedbythecolumns,wereadthewomen'srankinglistso"vertically.Woman1'sranking listis(3,1,2)andWoman2andWoman3'srankinglistsareboth(3,2,1). Wecanconvertrankingliststolistsofindividualcontributionstojoint-utility.Forexample,by equation1,Man1'scontributiontothejoint-utilityofapairingwithwoman1is:

PAGE 22

14 CHAPTER4.ANEXAMPLE 3 $ 3=0 Hiscontributiontothejoint-utilityofapairingwithwoman2is: 3 $ 1=2 Hiscontributiontothejoint-utilityofapairingwithwoman3is: 3 $ 2=1 Equivalently,wecansubtracttherankinglistfromalistoflengthn,whoseentriesarealln. (3 3 3) $ (3 1 2)=(0 2 1) Foramatrixofcontributionstojoint-utility,wesubtracttherankingsmatrixfromannbynmatrix whoseentriesarealln. Tondthesharedutilityofthepairings,weconvertrankingmatricestomatricesofindividual contributionstojointutility...: fortheMen: ! ! 333 333 333 ! ! $ ! ! 312 132 132 ! ! = ! ! 021 201 201 ! ! fortheWomen: ! ! 333 333 333 ! ! $ ! ! 333 122 211 ! ! = ! ! 000 211 122 ! ! ...andthenndthejoint-utilitymatrix(bysummingthetwomatricesoftheindividualcontributionstojoint-utility,inaccordancewithequations2.aand2.b):

PAGE 23

15 ! ! 021 201 201 ! ! + ! ! 000 211 122 ! ! = ! ! 021 412 323 ! ! Thepeoplethenreordertheirrankingsinaccordancewiththisnewmatrix:Forthemen:man1 nowgetsthehighestutilityfrompairingwithwoman2,thesecondhighestutilityfrompairingwith woman3andthelowestutilityfrompairingwithwoman1.Therefore,hisrankinglistis(3,1,2). Man2'srankinglistis(1,3,2).Man3seesequalutilityfrombeingpairedwithwomen1or3,so welookathispriorrankings.Beforewereorderedtherankings,Man3'srstchoicewaswoman1 andhissecondchoicewaswoman3.Therefore,Man3willpreferbeingwithwoman1inthisround; hisrankinglistisnow:(1,3,2). Forthewomen:Woman1'srankinglistis(3,1,2).Woman2preferredMan3toMan1in thepriorround,soherrankinglistwillbe(2,3,1).Woman3'srankinglistis(3,2,1). Thenewrankingmatricesare: MenWomen ! ! 312 132 132 ! ! ! ! ! 323 132 211 ! ! Tosaveourselvesastep,insteadofusing(amatrixversionof)equation1,wecanuse(amatrix versionof)equation2.c.Weaddtogethertherankingmatrices: MenWomen ! ! 312 132 132 ! ! + ! ! 323 132 211 ! ! = ! ! 635 264 343 ! ! ...andconverttheresultantmatrixtoajointutilitymatrix.LetMbethemen'sutilitymatrixand letWbethewomen'sutilitymatrix.Previouslywesaid[ n $ M ]+[ n $ W ]=joint-utilitymatrix (matrixequivalentofequation2.b).Wecanseethat[ n $ M ]+[ n $ W ]=2 % n $ [ M + W ]=joint-

PAGE 24

16 CHAPTER4.ANEXAMPLE utilitymatrix(matrixequivalentofequation2.c).Therefore,wecanndthejointutilitymatrix bytakingannxnmatrixwithallentriesequalto2 % n andsubtractingthesumofthetworanking matrices. ! ! 666 666 666 ! ! $ ! ! 635 264 343 ! ! = ! ! 031 402 323 ! ! Thenewrankingmatricesare: MenWomen ! ! 312 132 213 ! ! ! ! ! 313 132 221 ! ! Ifwesumthesematrices,converttoajoint-utilitymatrixandcreatenewrankingmatricesbased onthejoint-utilitymatrix,wendthatthenewsetofrankingmatricesisthesameastheprevious setofrankingmatrices.Wethereforedeclaretheserankingmatricesstable.Wesaythatittook tworounds'ofreorderingfortherankingstobecomestable.Withthesestablerankingmatrices, weimplementthemaleoptimalGale-ShapleyAlgorithmtondstablenalpairings: Thenalrankinglistsareasfollows: Man1:(3 1 2)Woman1:(3 1 2) Man2:(1 3 2)Woman2:(1 3 2) Man3:(2 1 3)Woman3:(3 2 1) Wecanconverttheserankinglistsintothepreferencelists,ifwewish: Man1:[2 3 1]Woman1:[2 3 1] Man2:[1 3 2]Woman2:[1 3 2] Man3:[2 1 3]Woman3:[3 2 1] Eachmanproposestohisrstchoice: Man1andman3proposetowoman2.Man2proposestowoman1. Wedenotethisinaproposallist':

PAGE 25

17 M1:2 M2:1 M3:2 Woman1hasgottenaproposalfromonlyoneman(man2),soshetentativelyacceptshisproposal, reservingtherighttorejecthimifshegetsabettero" er.Woman2hasgottenproposalsfromtwo men.Woman2prefersman1toman3,sosherejects 1 man3andtentativelyacceptsman1's proposal.Wecandenoteman3'srejectionbywoman2,bycrossinghero"hisproposallist.Man 3nowproposestohisnext(second)choice:woman1: M1:2 M2:1 M3: 2 $& 1 Woman1getstochoosebetweenman2andman3.Woman1prefersman2toman3,sosherejects man3.Man3crosseswoman1o"hisproposallist,andasksouthisnext(thirdandnal)choice: woman3.Woman3hasreceivednootherproposals,sosheacceptsman3'sproposal: M1:2 M2:1 M3: 2 $& 1 $& 3 Allpersonsarenowmatchedasfollows: Man1&Woman2 Man2&Woman1 Man3&Woman3 Or,inmoreformalnotation: p M (Man1)=Woman2 p M (Man2)=Woman1 p M (Man3)=Woman3 Ouruseofthemale-optimalversionoftheGale-Shapleyalgorithmisarbitrary.Wecouldjustas easilyusethefemale-optimalversion.(Inthiscase,however,thefemale-optimalandmaleoptimal versionsyieldthesameresult.) 1 Notethatwhileacceptancesaretentativeuntileachpersonismatched,allrejectionsarenal.

PAGE 27

Chapter5 PropertiesoftheGale-Shapley StableMarriageAlgorithm Beforeexploringthepropertiesofourevolutionarypreferencemodel,wewilldiscusssomeproperties oftheoriginalGale-Shapleyalgorithmforndingstablepairings. 5.1UtilityintheGale-ShapleyStableMarriageAlgorithm Thefemaleoptimal'(maleoptimal')Gale-ShapleyAlgorithmresultsinastablematchingsuch thateachwoman(man)hasthebestpartnershe(he)canhaveinanystablematchingandeach man(woman)hastheworstpossiblepartnerhe(she)canhaveinanystablematching.(Guseld& Irving[1995]pp11-12) Ifthemale-optimal'andfemale-optimal'versionsoftheGale-ShapleyAlgorithmyieldthesame matching,therearenootherpossiblestablematchings. Thereisatrade-o"'inutilityintheStableMatchingProblem:IfAandBarestablematchings,andifthereexistsanindividual suchthat prefersherpartnerinAtoherpartnerinB, thenthereexistsanindividual ,suchthat prefershispartnerinBtohispartnerinA 1 1 Proof:IfAisastablematching,thenforanymatchingB,ifnoparticipantsprefermatchingBtomatchingA, butsomeprefermatchingAtomatchingB,thentheparticipantswhoprefermatchingAconstituteblockingpair, andmatchingBisunstable.

PAGE 28

20 CHAPTER5.PROPERTIESOFTHEGALE-SHAPLEYALGORITHM 5.2NumberofRoundstoCompletionintheGale-Shapley StableMarriageAlgorithm Fromourdescription,itisclearthatthealgorithmterminates.Inthemale-optimalversionofthe GaleShapleyAlgorithm,eachmanaskseachwomanoutnomorethanonce.Itwouldtake n 2 stages'(astagebeinganincidenceofanymanaskinganywomanout)for n mentoask n women out.Itmustthereforetakenomorethan n 2 stagesfortheGaleShapleyAlgorithmtoterminate. Furtherresearchshowsthatthealgorithmwillterminateafteramaximumof n 2 $ n +1stages. (Guseld&Irving[1995]pg13) AccordingtoGuseldandIrving'sbook,TheStableMarriageProblem:StructuresandAlgorithms "theaveragenumberofproposalsmade...is nH n + O ((log n ) 4 ),where H n =1+1 / 2+1 / 3+ +1 /n isthenthharmonicnumber...theaverage-casecomplexityofthealgorithmis# ( n log n )".(Guseld &Irving[1995]pg14)

PAGE 29

Chapter6 PropertiesofOurEvolutionary Model 6.1UtilityinOurEvolutionaryModel Ifwehavethefollowingoriginal'rankingsmatrices.... MenWomen ! ! ! 1342 4132 4312 4123 ! ! ! ! ! ! 1341 4132 3413 2224 ! ! ! ...andwereordertherankingsinthesematrices,inaccordancewithourevolutionarymodel,we endupwiththefollowingrevised'rankingsmatrices.

PAGE 30

22 CHAPTER6.PROPERTIESOFOUREVOLUTIONARYMODEL MenWomen ! ! ! 1342 4132 4312 3124 ! ! ! ! ! ! 1341 4132 3413 2224 ! ! ! Theserankingsmatricesarestable(ifwereordertheminaccordancewithourevolutionarymodel, theydonotchange). IfweusetheGale-ShapleyMatchingAlgorithmtocreatingstablematchings,wendonlyone stablematching(themale-optimalandfemale-optimalversionsofthealgorithmbothyieldthesame results,which,aswesaidin5.1,meansthereisonlyonestablematching),fortheoriginal'rankings: Man1&Woman1Man3&Woman3 Man2&Woman2Man4&Woman4 Andonlyonestablematchingfortherevised'rankings: Man1&Woman1Man3&Woman3 Man2&Woman2Man4&Woman4 Thesematchingsareidentical.Therankingsbehindthem,however,aredi" erent. Fortheoriginalrankings:Men1,2,and3,andwomen1,2,and3areeachwiththeirtopchoice. Byequation2.c,eachofthesepairingsresultsinajointutilityof: 2 % 4 $ [1+1]=8 $ 2 =6 Woman4isman4'sthirdchoice,andman4iswoman4'sfourthchoice,forajoint-utilityof: 2 % 4 $ [3+4]=8 $ 7 =1

PAGE 31

6.1.UTILITYINOUREVOLUTIONARYMODEL 23 Fortherevisedrankings: Men1,2,and3,andwomen1,2,and3arestilleachwiththeirtopchoice.Byequation2.c,each ofthesepairingsresultsinajoint-utilityof: 2 % 4 $ [1+1]=8 $ 2 =6 Woman4isnowman4'sthirdchoice,andman4iswoman4'sfourthchoice,forajoint-utilityof: 1 2 % 4 $ [4+4]=8 $ 8 =0 Sixoftheparticipants(threeofthecouples)obtainequalutilitywhetherornottheyrevisetheir rankings.Twooftheparticipants(onecouple),however,areworseo"havingrevisedtheirpreferences. IntheoriginalStableMatchingProblem,wehaveatradeo"inutility;ifonepersongainsutilityinswitchingbetweenstablematchingAtostablematchingB,thenanotherpersonlosesutility (see5.1).Inourevolutionarymodel,weseenosuchtradeo" Howdidthishappen? Fromaquantitativeperspective,man4rankedwoman4ashisthirdchoice,butwomen1,2, and3eachrankedman4astheirsecondchoice,whilewoman4rankedman4asherfourthchoice. Thisresultedinman4gettingpotentialjoint-utilityof: 2 % 4 $ [4+2]=2frompairingwithwoman1 2 % 4 $ [1+2]=5frompairingwithwoman2 2 % 4 $ [2+2]=4frompairingwithwoman3 2 % 4 $ [3+4]=1frompairingwithwoman4 Man4thenreorderedhisrankings,andgotarevisedrankinglistof:(3 1 2 4). 1 Allowingparticipantstohave0utilityimpliesthattheymaybeindi! erentbetweenbeingmarriedandstaying single.Wecouldxthisbyrevisingourutilityfunction(adding1toindividualcontributionstojointutility,making theminimumjoint-utility2),butthisdoesn'ta! ectthestabilityoftheothermatchings.Wecould(alternatively) choosetoclaimthatremainingsinglehasnegativeutility.

PAGE 32

24 CHAPTER6.PROPERTIESOFOUREVOLUTIONARYMODEL Howmightweinterpretsuchresultsfromabehavioraleconomicsperspective? Beforereorderinghispreferences,man4didn'trealize'howmuchwomen1,2,and3likedhim.In ignorance,man4couldhavederivedautilityof1frommatchingwithwoman4.Havingseenhow happyheandhisotherpotentialpartnerswouldbetogether(andhavingrealizedthatwoman4 wouldnotcontributeanyutilitytoaunionwithhim),man4re-evaluatedhispreferencesandcould nolongerenjoybeingpartneredwithwoman4. 6.2RoundstoCompletioninourEvolutionaryModel Data:RoundstoTermination Inchapter7,weprovethatallpossiblesetsofrankingseventuallystabilize.Thattherankings stabilizeimpliesthatnosetofrankingscanappearmorethanonce,unlessthatsetofrankings isstable(otherwise,wegetaninniteloop) 2 .Therefore,foranygivengroupsize,therankings mustbestableafterbeingreorderedq-1times,whereq=numberofpossiblesetsofrankingsofthat particulargroupsize.Sinceqgrowsquiterapidlywithgroupsize,q-1formsaridiculouslylargeand unhelpfulupperboundtothenumberofre-orderingsneededtostabilizetherankingsforanygiven groupsize. Whilewehaven'tfoundausefulupperbound,weshouldbeabletoestimatethemediannumber ofreorderingsnecessaryforanygivengroupsizebyrunningouralgorithmonabunchofrandomly generatedpreferencesetsoftheappropriatesize. Usingtheprogram r_rand_mult_size_MW_simult.m anditssubsidiaries(alllistedintheappendix), wehavecreatedandreordereduntilstable1000randomsetsofrankingmatricesofeachsizefrom 1to100.Wehaverecordedtheresultsandplottedthedataforeachgroupsize(below): 2 Thisisbecausethe REORDER functiondependsonlyontherankings;if REORDER ( A )= B and REORDER n ( B )= A ,where A = B then REORDER n +1 ( A )= REORDER k ( n +1) ( A )= A and REORDER ( A )= REORDER k ( n +1)+1 ( A )= B # k $ N ,therefore, A and B repeataninnitenumberoftimes,thereforetherankings neverstabilize.

PAGE 33

6.2.ROUNDSTOCOMPLETIONINOUREVOLUTIONARYMODEL 25 Boththemedianandthemeanseemtohavealogarithmicrelationshiptogroupsize.Wewilltry totalogarithmiccurvetoeach:

PAGE 34

26 CHAPTER6.PROPERTIESOFOUREVOLUTIONARYMODEL Themedianvalueshaveacorrelationofapproximately0.97withalogarithmicfunction.Themean valueshaveacorrelationofapproximately0.98withalogarithmicfunction.Wenotethatthemean numberofroundstostabilityseemtoexhibitsomestrangebehaviorbetweengroupsize10and groupsize20(morespecically,thereanunexpectedlylargeincreaseinthenumberofroundsof reorderingneededbetweengroupsizes13and14) 3 .Thecauseforthisapparentjumpisunknown 3 Toseeifthejumpwasreallythere,orjustaquirkofoursample,werananewsetofrandomlygeneratedranking matricesthroughourprogram.Betweengroupsizes13and14,weendedupwithalargerjumpinthenumberof

PAGE 35

6.2.ROUNDSTOCOMPLETIONINOUREVOLUTIONARYMODEL 27 tous,andcouldbeasubjectforfutureinquiry. Wealsoobservedthemaximumnumberofroundsneededforeachgroupsize'srankingstobecomestable.Thelarge(andrapidlyincreasing)varianceinourresultssuggeststhatasgroupsize grows,thepercentofsetsofrankings,whichrequirethemaximumnumberofroundstostabilize, increasesrapidly,makingourdatauselessinestimatingthemaximumroundstostability. roundsorreorderingneededthanwedidinthepriorattempt.Thejumpwasapparentinboththemeanandthe median.Foradisplayofthevalueswegotinthesecondattempt,pleaseseeAppendix2.

PAGE 36

28 CHAPTER6.PROPERTIESOFOUREVOLUTIONARYMODEL

PAGE 37

Chapter7 ProofthatRankingsStabilize Instudyingtheevolutionarymodelofrankings,wewanttoknowwhetherallpossiblerankingsets willeventuallybecomestableafterapplyingthealgorithmasu! cientnumberoftimes.Running randompreferencesetsthroughouralgorithminsection6.2,wefoundnosetsofpreferences,which didnoteventuallystabilize 1 .Inthischapter,wewillprovethatthereexistnosetsofpreferences whichwillnoteventuallystabilize. Denition. Foranyrankingset, X ,let REORDER bethefunctionthatreordersrankingset X inaccordancewiththealgorithm.Ifreorderingrankingset X yieldsrankingset Y ,wewillsay REORDER ( X )= Y REORDER t ( X ) isthefunctionthatreorderstherankingset, X t times. Observation. Wenotethatforanygivengroupsize,thenumberofpossiblerankingsetsisnite. Therefore,iftherankingsneverstabilize,therankingsmustcycle,i.e. A ,arankingset,suchthat REORDER ( A )= B ( B # = A ) ,which,ifoperateduponbythealgorithmagainanitenumberof times,willyieldrankingset A again,i.e. REORDER n ( A )= A forsomeinteger n # =1 Wewillprovethatforanygivenrankingset, A REORDER n ( A )= A ( n =1thatis,wewill provethatrankingsnevercycle,therebyprovingthatthereorderingalgorithmterminates. 1 Thisisobviousbasedonourniteresultsforthemean.

PAGE 38

30 CHAPTER7.PROOFTHATRANKINGSSTABILIZE 7.1OverviewoftheProof Foranyrankingset A ,letusconsidersomewoman, .Wewillshowthatifwoman 'srstranked (mostpreferred)manunderrankingset A giveswoman arankingof q ,thenwoman 'srst rankedmanunderrankingset REORDER ( A )mustgiveherarankinglower(better)thanorequal to q (Theorems1,2,3,&4).Furthermore,ifequalityholds,thenherrstchoiceforamanhas notchangedfromthepriorround(fromTheorems3&4).Thisstatementisgenderneutraland thereforeappliesequallytothemen. Giventheabove,therankinggiventoapersonbytheirrstchoice,foranygivenround,can onlydecrease(improve)underthe REORDER function.Becausethereareanitenumberofpossiblerankingsets,itwilltakeanitenumberofreorderingsforthisrankingtoreachaminimum. Wewillshowthatoncetherankingsgiventoallpersonsbytheirrstchoicesarestableunder the REORDER function,therankinggiventoanypersonbyhersecondchoicewillreachaminimum(becomestable)inthemannerdescribedearlierfortherstchoice.Oncetherankingsgiven toallpersonsbytheirsecondchoicesarestableunderthe REORDER function,therankinggiven toanypersonbyherthirdchoicewillreachaminimum(becomestable)andsoonuntilallrankings arestableunderthe REORDER function(Theorems1,2,3,&4). 7.2DenitionsandNotation Notation. Thefollowingnotationiscumbersome,however,itwillallowforgreaterclarityinour proof.Forwoman ,underagivenrankingset, A : t m,i = means is 's i thrankedmanunderrankingset REORDER t ( A ) t w,i = means is 's i thrankedwomanunderrankingset REORDER t ( A ) t r,i = k means is t m,i 's k thrankedchoice. Note: If t m,i = and t r,i = k ,then t r,k = i Denition. RANKSUM :Forastartingrankingsetof A RANKSUM ( !," ) n isthesumof 's rankfor underrankingset REORDER n ( A ) plus 'srankfor underrankingset REORDER n ( A ) Denition. MINUNSTABLE n ( A ) isthefunctionsuchthatafter n roundsofre-ordering,if

PAGE 39

7.3.LEMMASANDTHEOREMS 31 MINUNSTABLE n ( A )= $ ,thenfor q< $ ,foranyfemaleparticipant, : n + i m,q = n m,q and n + i r,q = n r,q ,forall i ) 0 andforanymaleparticipant, : n + i w,q = n w,q and n + i r,q = n r,q ,forall i ) 0 If MINUNSTABLE n ( A )=$ ,thenforanyparticipant ,ifinround n 'srankingfor or 's rankingfor islessthan$ ,then and 'smutualrankingswillnotchangeafterround n Note:The MINUNSTABLE functionwillbethecenterpieceofourproof.Wewillultimately showthatifwedene P as: P ( k,A )= t MINUNSTABLE t ( A )= k Suchthatforany j k t + i m,j = t m,j t + i r,j = t r,j and t + i w,j = t w,j t + i r,j $ t r,j forall i> 0 Thenwecanshowthat P (1 ,A )existsforall A Furthermore,wewillshowthat,for k< groupsizein A ,if P ( k,A )exists,then P ( k +1 ,A )exists. Thiswillcompleteourinductiveproof. 7.3LemmasandTheorems Lemma1 Ifbetweenrounds n and n +1, and # switchrelativepositionson 'spreferenceslist,with 's rankingimproving,thenthe RANKSUM for and # inround n isgreaterthanthe RANKSUM for and inround n If n m,a = n +1 m,b = and n m,c = n +1 m,d = # andif

PAGE 40

32 CHAPTER7.PROOFTHATRANKINGSSTABILIZE a>c but bRANKSUM n ( n n m,a ) Proof: If n m,a = n +1 m,q = and n m,v = n +1 m,s = # andif qv : RANKSUM n ( !,! m,v ) # = RANKSUM n ( !,! m,a ) Letusassumethat a>v and RANKSUM n ( !,! m,v )= RANKSUM n ( !,! m,a ) Byouralgorithm,incaseswhereapersonhastwopossiblepairingswiththesameutility,he(she) willprefertheone,whichhe(she)wouldhavepreferredonthepriorround.Therefore: q>s CONTRADICTION(Wealreadyassumedthat qv but qRANKSUM n ( !,! m,a )

PAGE 41

7.3.LEMMASANDTHEOREMS 33 Lemmas2.aand2.b Thesearelemmasforwhen 'srankingfor worsensfrom a to b atstep n +1 Lemmas2.aand2.bbothassumepertaintocaseswhere: = n w,a = n +1 w,b suchthat aa andwhoserankingby atstep n +1is d suchthat d a If = n w,a = n +1 w,b Andif aa ) d Proof: Let = n w,a = n +1 w,b where aa ) d If = n w,a = n +1 w,b where aa ) d

PAGE 42

34 CHAPTER7.PROOFTHATRANKINGSSTABILIZE Lemma2.b If 'srankingfor worsensfrom a to b atstep n +1,thenthereissomeman # ,whoserankingby atstep n is c ) b andwhoserankingby atstep n +1is d suchthat dd Proof: Let = n w,a = n +1 w,b where ad If = n w,a = n +1 w,b where ad

PAGE 43

7.3.LEMMASANDTHEOREMS 35 Lemma3 [ 'srankingfor atstep n ]plus[ 'srankingfor atstep n ]willalwaysbegreaterthan[ 'sranking for atstep n +1] If RANKSUM n ( !," )= c and n +1 m,a = Then ab Weassumed(andaretryingtodisprove): a ) c

PAGE 44

36 CHAPTER7.PROOFTHATRANKINGSSTABILIZE Therefore, a>b (Thismeans 'srankfor hasincreasedinround n +1) Bylemma2.b,thereexistsman % suchthat: % = n m,v = n +1 m,s where v ) a>s butbyLemma1: RANKSUM n ( !,% ) b v ) a ) c Therefore: v +1 >v ) a ) c Transitively: v +1 >c CONTRADICTION(wealreadyshowed v +1
PAGE 45

7.3.LEMMASANDTHEOREMS 37 Theorem1 If,atstep n gives arankingof1,then 'srankingfor cannotbelarger(worse)atstep n +1 thanatstep n ( 'srankingfor canonlyimproveatstep n +1). If n m, 1 = "and" n w,a = n +1 w,b = Then b a Proof: RANKSUM n ( !," )= a +1 ByLemma3, b
PAGE 46

38 CHAPTER7.PROOFTHATRANKINGSSTABILIZE Theorem2 If,atstep n gives arankingof$ ,where$= MINUNSTABLE n ( A ),then 'srankingfor cannotbelarger(worse)atstep n +1thanatstep n ( 'srankingfor canonlyimproveatstep n +1). If n m, = and n w,a = n +1 w,b = Where $ = MINUNSTABLE n ( A ) Then a ) b Proof: Thiswillbeaproofbycontradiction. Given n m, = and n w,a = n +1 w,b = Assume: ad ,byLemma1 RANKSUM n ( ",% ) a )

PAGE 47

7.3.LEMMASANDTHEOREMS 39 thereforeourassumptionmustbewrong. If n m, = and n w,a = n +1 w,b = ,then a ) b

PAGE 48

40 CHAPTER7.PROOFTHATRANKINGSSTABILIZE Theorem3 If 'srankingfor improvesfrom k> 1atstep n ,to1atstep n +1,thentheranking getsfrom herrstchoiceatstep n isgreater(worse)thantheranking getsfrom (hernewrstchoice)at step n +1. If n m,k = n +1 m, 1 = where k # =1 Then n r, 1 > n +1 r, 1 Proof: Given: n m,k = n +1 m, 1 = where k # =1 Let # = n m, 1 Then RANKSUM n ( !,# )=1+ n r, 1 Since 'spositionon 'slistimprovesrelativeto # 'satthe n +1thround,byLemma1, RANKSUM n ( !," ) n +1 r, 1

PAGE 49

7.3.LEMMASANDTHEOREMS 41 Theorem4 If 'srankingfor improvesfrom k> $attime n ,to$attime n +1,thentheranking getsfrom her$ thchoiceatstep n isgreater(worse)thantheranking getsfrom (hernew$ thchoice)at step n +1. If n m,k = n +1 m, = Suchthat: k> $ and $ = MINUNSTABLE n ( A ) Then n r, > n +1 r, Proof : Supposethat: n m,k = n +1 m, = Suchthat: k> $ and $ = MINUNSTABLE n ( A ) Andlet a and b besuchthat = n w,a = n +1 w,b Weneedtoshowthat n +1 r, = b< n r, Let # = n w, Since # and changepositions,weknow: RANKSUM n ( !," ) $ ,so a< n r, ,soassumethat:

PAGE 50

42 CHAPTER7.PROOFTHATRANKINGSSTABILIZE ad Further,since 'srankingof % changes,weknowthatif z issuchthat % n m,z = Then z ) $ Further,since,attime n +1, 'srankingfor % improvesrelativeto 'srankingfor # : RANKSUM n ( % ," ) $and$= MINUNSTABLE n ( A )then n +1 r, < n r,

PAGE 51

7.4.PROOF 43 7.4Proof Wewillnowprovethatinourmodelofevolvingpreferences,allinitialsetsofrankingseventually stabilize.Wewillusethefollowing,whichwehavejustproventobetrue: Observation1. Foranygivengroupsize,thenumberofpossiblerankingsetsisnite.If therankingsneverstabilize,therankingsmustcycle. Theorem1. If,atstepn, gives arankingof1,then 'srankingfor cannotbelarger (worse)atstepn+1thanatstepn( 'srankingfor canonlyimproveatstepn+1). Theorem2. If,atstepn, gives arankingof $ ,where $ = MINUNSTABLE n ( A ) then 'srankingfor cannotbelarger(worse)atstepn+1thanatstepn( 'srankingfor can onlyimproveatstepn+1). Theorem3. If 'srankingfor improvesfromk1atstepn,to1atstepn+1,thenthe ranking gotfromherrstchoiceatstepnwaslarger(worse)thantheranking getsfrom (her newrstchoice)atstepn+1. Theorem4. If 'srankingfor improvesfromk $ attimen,to $ attime n +1 ,thenthe ranking gotfromher $ thchoiceatstep n waslarger(worse)thantheranking getsfrom (her new $ thchoice)atstep n +1 Letusassumethattherankingsdonotstabilize.ByObservation1,thisimpliesthattherankingscycle.Intheinitialrankings,sayperson 'srstrankedpersonis .Either 'srstranked personafterreorderingonce(atstep2)is ,or 'srstrankedpersonafterreorderingonceis someoneelse.If 'srstrankedpersonisstill ,thenbyTheorem1,therank receivesfrom atstep2mustbeless(better)thanorequaltotherank receivedfrom atstep1.Say 'srst rankedpersonatstep2is # ,where # and arenotthesameperson.ByTheorem3,therank receivesfrom # atstep2islower(better)thantherank receivedfrom atstep1.Eitherway, therank receivesfrom 'srstrankedchoiceatstep2islower(better)thanorequaltotherank receivedfrom 'srstrankedchoiceatstep1.Thisargumentappliesforallparticipantsand allsteps.Therankingeachparticipantgetsfromhisorherrstrankedchoiceismonotonically

PAGE 52

44 CHAPTER7.PROOFTHATRANKINGSSTABILIZE decreasing(improving).ByObservation1,thepreferencescycle.Thismeansthattherankingeach participantgetsfromhisorherrstrankedchoicereachesitsminimuminnitetimeand(sinceit ismonotonicallydecreasing)maintainsthatminimum. Letussaythattherankingeachparticipantreceivedfromhisorherrstchoicehasstabilized (reacheditsminimum)bystepn.ByTheorem3,sincetherankingeachpersongetsfromhisor herrstrankedchoiceisnolongerdecreasing,(bymodustollens)theperson,whomheorsheranked number1,cannotchange.Byourdenitionofthe MINUNSTABLE function, MINUNSTABLE n (Initial Rankings) ) 2. Let$= MINUNSTABLE n (InitialRankings).Say 's$ thchoiceis % .Atstep n +1,either % isstill 's$ thrankedchoice,orsomeoneelseis.Say % isstill 's$ thrankedchoiceatstep n +1. ByTheorem2,therank gotfrom % musthaveimproved(decreased)orstayedthesame.Say 's $ thrankedchoiceatstep n +1isnot % ,but $ .ByTheorem4,theranking $ givesto atstepn+1 mustbelower(better)thantheranking % gaveto atstepn.Asbefore,thismeansthattheranking getsfromher$ thrankedchoiceatstepn+1islower(better)thanorequaltotheranking got fromher$ thrankedchoiceatstepn.Thisargumentappliestoallparticipantsandallstepsgreater thanorequalton.ByObservation1,therankingeachparticipantgetsfromhisorher$ thranked choiceatanystepafterstep n ismonotonicallydecreasing,andreachesitsminimumandstabilizes inaniteamountoftime.Saytherankingeachparticipantgetsfromhisorher$ thrankedchoice hasstabilizedbystep r .Thismeansthat$+1 ) MINUNSTABLE r (InitialRankings). Wecontinuereasoninginductivelyuntilwereachsteps,where MINUNSTABLE s (InitialRankings)=numberofmen=numberofwomen.Alltherankingswillhavethenstabilizedinanite amountoftime. Therankingseventuallystabilize.Thismeansthatgivenrankingset,Asuchthat REORDER n ( A )= A ,itmustbethecasethatn=1

PAGE 53

Chapter8 TheHistoryofInterdependent Utility,DemandSchedulesand PreferencesinEconomicTheory Pleasenote:Thefollowingisaverygeneralsurveyofprioreconomicworkandshouldbynomeans beconsideredcomplete. Economicsisoftendescribedasthestudyofthedistributionofscarcegoods,orasthestudyof theinteractionsofrational,self-interestedindividuals. Ourmodelisconsistentonallbutoneofthesepoints.Individualmatesandpartnersarescarce; thereisonlyoneofeachpotentialmate.Ourparticipantsactinaccordancewiththeirdesires, andthereforearerational.Clearly,ourparticipantsinteract.Theparticipantsarenotexclusively self-interested,however,theycareabouteachother'sutilityandpreferences.Somepeoplemight claimthattheparticipants'lackofself-interestmakesourmodelpsychological,ratherthaneconomic. Thecombinationofpsychologyandeconomicsisnotnew,however,noristheincorporationof interdependentutility,interdependentdemand,orinterdependentpreferences.

PAGE 54

46 CHAPTER8.ECONOMICHISTORY From1776,untilthelatenineteenthcentury,ClassicalEconomicswastheprevailingeconomicphilosophy.ClassicalEconomicsallowedforthecombinationofeconomicsandpsychology 1 .Inthelate nineteenthcentury,however,theNeoclassicalRevolution'dispensedwithpsychologyandstressed theimportanceofmarginalutility.(Mason[1995]) In1892,anEconomistnamedHenryCunynghamecriticizedAlfredMarshall(arguablythepreeminenteconomistoftheday)forignoringtheimportanceofinterdependentdemandschedulesin determiningprice.(Cunynghame[1892]) ThorsteinVeblenusedideasfromLocke 2 ,Cunynghameandothersinwritinghisbook, Theory of the Leisure Class.Veblenassertedthattheutilityofcertaingoodsandserviceslay,notintheir inherentutility,'butintheiruseasasignierofwealth.Veblencoinedthetermpecuniaryemulation,'theideathatindividualskeepup'theappearanceofrelativewealthbyattemptingto conspicuously'consumethesamegoodsasthosewithhigheconomicstatus.Amodernwardrobe, Veblenexplained,actsasasignierofwealth.Thewealthypopulation,saidVeblen,setsthepacein mattersoffashion(Veblen[1899]pg116).Whenthewealthypopulationupdatesitswardrobe,the lesswealthyfollowsuit,attemptingtocopythewardrobeasbestastheycan,giventheirmorelimited means.Astheeconomicelitechangetheirpreferencesforfashion,sodoestherestofthepopulation. Intheearly1900s,alotofsocialscienceandbusinessliteraturediscussedtheimportanceofinterdependentpreferences,whileeconomicliterature,forthemostpart,ignoredit.(Mason[1995]) In1920,ArthurPigoudevelopedtheconceptofexternalities,inwhichindividualconsumption a ectssocietalutility. In1948,OskarMorgensternwroteanarticleinfavorofamodelofconsumerbehaviorinvolving 1 AsshowninSmith'sTheoryofMoralSentiments [1776],andinBentham'sThePsychologyofEconomicMan [1817] 2 In1691,JohnLockewrote,inalettersenttoamemberofparlament: ...thingsofFashionwillbehadaslongasMenhaveMoneyorCredit,whateverRatestheycost, andtheratherbecausetheyaredear.ForitbeingVanitynotUsethatmakestheExpensiveFashion ofyourPeople,theEmulationis,whoshallhavethenest,thatis,thedearestthings,notthemost convenientoruseful.Howmanythingsdowevalueorbuy,becausetheycomeatdearratesfromJapan andChina,whichiftheywereourownManufactureorProduct,commontobehad,andforalittle Money,wouldbecontemnedandneglected?

PAGE 55

47 interdependentdemandcurves: Currenttheorypossessesnomethodsthatallowtheconstructionofaggregatedemand curveswhenthevariousconstituentindividualdemandcurvesarenotindependentof eachotherifthereisinterdependenceamongindividualdemandfunctionsitisdoubtful thataggregateorcollectivedemandfunctionsoftheconventionaltypeexistanddonot havetobereplacedbymorecomplicatedconceptsItisaseriousshort-comingofthe currenttreatmentofaggregatedemandcurvesthattheirstudyhasnotbeenextended tothemostimportantcasewhereadditivityisabsent.(Morgenstern[1948]) In1966,usingcrimeandeconomicstatisticsfrom1960,BeltonFleisherfoundacorrelationbetween income,unemploymentconditionsandjuveniledelinquency.(Fleisher[1966])Fleisherarguedthat, consideringtheriskofgettingcaught,arationalpersonmightchoosetoengageincriminalbehavior ifandonlyifheorshewerehavingnancialdi! culties(bothbecauseheorshemightneedtosteal inordertosurviveandalsobecausetheopportunitycostofgoingtojailislowerforpeoplewithan alreadybleakfuture).Implicitly,lowpovertyandunemploymentratesbenetallmembersofsociety. In1974,GeryBeckerwroteanarticletitledATheoryofMarriage:PartII.Inthispaper,Becker discusses,inbrief,thee" ectonaperson'sindi"erencecurveofhavingtheperson'sutilitydepend notonlyonhisconsumption,butalsoontheconsumptionofhispartner'. Recently,theuseofpsychologyineconomicmodelsexperiencedarevivalintheeldofbehavioral'economics. In2001,YannBramoullewroteapapertitledInterdependentUtilities,PreferenceIndeterminacy, andSocialNetworks'.Bramoulleintroducedamodelofinterdependentutility,inwhicheachparticipantAcouldlikeanyotherparticipant,B,(andthereforederiveutilityfromparticipantB's utility),hateparticipantB(andthereforehaveutilityinverselydependentonB'sutility),ornot careaboutparticipantB.Bramoulledidnotapplyhismodelofutilitytomatching.Muchofthe articleisdevotedtonetworkmodelsofinterdependentsocialutility. Overthepastdecade,severalarticleshavebeenwrittenontwo-sidedmatchingandinterdependent utility.Subjectsexploredincludenoise(Chade[2006])theacceptancecurse'(anapplicationofthe winner'scurse'fromauctiontheory)(Chade[2006]),searchfrictions(Shimer&Smith[2000];Chade

PAGE 56

48 CHAPTER8.ECONOMICHISTORY [2006];Smith[1997]),incompleteinformation(inwhichplayersmakeguessesbasedontheirowninformationandonotherplayers'actions)(Chade,Lewis,andSmith[2006];Ostrovsky,Chakraborty, andCitanna[2008]),andreputation(Anderson&Smith[2006]).

PAGE 57

Chapter9 EconomicAspectsand ImplicationsoftheEvolutionary RankingsModel Theevolutionary'modelhasthusfarbeendescribedasmodelingthebehaviorofdatingcouples and,inonecase,asmodelingthepairingofmedicalstudentswithhospitals.Themodelhasmore importanteconomicapplications,whichwewillnowdiscuss. AccordingtotheEconomist.com,[m]orethantwo-thirdsofoutput[frommembercountriesofthe OrganisationforEconomicCo-operationandDevelopment],anduptofour-fthsofemployment,is nowintheservicessector.(Economist.com)Services,unlikemass-producedgoods,tendtoderive valuefrominteractionbetweenthebuyer(patron)andseller(provider).Someservices,suchas paperdelivery,don'trequirealotofcollaboration.Others,suchaspersonal(athletic)training, therapy,waitservices(atrestaurantsandbars),andpaidcompanionship,havemorevaluewhen bothpartiesgetalong. Aswementionedbrieyinourintroductiontotheevolutionarymodel,thisisn'tnecessarilya matterofindividualsactingtomaximizeothers'utility.Whilepatronspayforaservice,theservice itselfvariesbasedontheprovider'sattitudetowardthepatron.Adisgruntleddoctormayhavean inferiorbedsidemanner.Thetherapist,ofapatientwithself-esteemissues,maybemorehelpfulif

PAGE 58

50 CHAPTER9.ECONOMICASPECTSANDIMPLICATIONS shedoesn'thatethepatient.Apaidcompanionisgenerallypaidtohaveorfeigna" ectionforthe personbeingaccompanied.Whilepaidcompanionsdon'tnecessarilyneedtoadoretheirpatrons (actingabilityisassumedavaluableskillintheprofession)acompanionmaynditdi! cultor impossibletopretendtolikesomeoneheloathes.Thosedininginrestaurantsmayrespondtoa waitertheylikebygivinghimagoodtip,resultinginhisbeingkinderthenexttimetheyvisit, resultinginayetlargertip.Similarly,patronsmayrespondtoawaitertheydon'tlikebytipping himpoorly,whichmayresultinthewaiterbeingrudetothemthenexttimetheyvisit,whichmay resultinthepatronswalkingout,leavingnotip. Theevolutionarymodelappliesnotonlytointeractionsbetweenpatronsandserviceproviders, butalsotosymbioticrelationshipsbetweenserviceproviders.Forexample,electricians,plumbers andotherconstructioncontractorsrecommendeachother,worktogether,andhavetogetalong. Fewpeoplelikeworkingsidebysidewiththosewhoopenlydespisethem.Psychologistsandpsychiatristshavetoworktogethertomonitordosageforthosemedicatedformentalillness.Psychiatrists oftenrelyonpsychologistsforinformationonwhetheramedicationisworking.Psychologistsneed totrustpsychiatristsinordertogivepatientsreferrals.Thesamegoesforallspecialistsinthe medicalprofession.Comicbooksandgraphicnovelscaninvolvetheworkofoneorallofthefollowing:writers,pencilers,inkers,colorists(exceptingblackandwhiteworks),letterers,and,inmany cases,coverartists(Caplan[2008]).Allofthesepeoplehavetoworktogether.(Aswe'vepresented itthusfar,ourmodeldealswithpairs,butwecouldconceiveofaversioninvolvingcoordinating thepreferencesofthreeormoreparties.Unfortunately,stablethree-dimensionalmatchingsdon't alwaysexist.SeeAlkan[1988])Theirrelationshipscanevolve.Individualwriterscanchoosetowork withthesameordi" erentillustratorsdependingonhowwelltheygetalong. Sofar,we'vepresentedhappypartnersasbeingmoredesirableduetotheirenthusiasm.Wehave assumedthathappypeopleareinherentlymorepleasant,orthatthemoreapersonvaluesapartnership,themoreshewillbewillingtosacriceinordertopreserveit.Thereisanotherpossible factor,whichwehaveignored:thatofRabinfairness. Thegrowingpopularityofbehavioraleconomicsasoflatehasencouragedtheintegrationofindividualdesireforfairnessandjusticeintomodelsofeconomicbehavior.Suchintegrationissupported bydataonthebehaviorofexperimentalsubjectsparticipatingintheUltimatumGame.TheUlti-

PAGE 59

51 matumGame,rstpresentedin1982byGuth,Werner,Schmittberger,andSchwarze 1 ,involvestwo players.Playeroneisaskedtodivideaspeciedamountofmoneybetweenhimselfandplayertwo. Playertwothengetsthechoiceofeitheracceptingthedealo" eredtohimbyplayerone,orrejecting thedeal,inwhichcaseneitherplayergetsanymoney.Thegameisnotrepeatedandtheplayersare anonymous.Iftheplayershavetraditional(non-interdependent)vonNeumann-Morgensternutility functions,weexpectplayer2toacceptanydealinwhichheisgivenapositiveamountofmoney. Experimentally,thisisnotwhatusuallyhappens.Mostplayersrejecto" ersoflessthan10%,in ordertopunishthepersonmakingtheo" erforbeingunfair'(Oosterbeeketal.[2004]pg177). Becauseoftheseresults,aneconomistnamedMatthewRabinproposedamodelofbehaviorin whichindividualsgainutilityfromenforcingwhattheyconsiderjust(theygetutilityfromhelping thosetheyseeasrighteousandfromhurtingthosetheyperceiveaswicked;seeRabin[1993].) TakingintoaccountRabinFairness',wecanseeanotherpossiblecauseforthebehaviorinour model:muchlikeintheUltimatumGame,individualsplacedwithpeopletheydon'tlike,butwho likethem,mayseethearrangementasunfair,andmaythereforetrytosabotagesucharelationship. Rabinfairnessalsosupportstheuseofourrankingmodelofutility:apersonmayjudgeamatch byhowthepersonheismatchedwithcomparestohisotherpotentialpartners.Ifallhispotential partnersareunattractive,andheismatchedwiththeleastunattractiveone,hemaybehappier thanhewouldbewereallhispotentialpartnersattractive,andhisnalmatchingwiththeleast attractiveofthem(amatchinghemightconsiderunfair'tohim). Thepracticalapplicationofourmodelmaynotbeinndingstablematchings,butinanalyzingorpredictinghowlongittakesforrankings/preferencestobecomestable(basedonthenumber ofpotentialpartners).Therearecostsassociatedwithbeinginandgettingoutofsuboptimalpartnerships.Peoplewithstill-evolvingopinionsoftheirpotentialpartnersmaydelaymakinglarge investmentsinpartnerships,untiltheyperceivethattheirpreferenceshavestabilized 2 Ifthisstabilizationofpreferencesovertimeisreectedinactualbehavior,wemaywishtoinclude,insomemodelsofsocialoreconomicbehavior,ananalysisoftimeneededforpreferencesto 1 ThisistheearliestsuchexampleaccordingtoMcCabe[2003] 2 Or,ifweincorporateopportunitycostorsearchfrictions',untiltheriskofasub-optimalpartnershipnolonger counteractstheanticipatedcostofwaitingforpreferencestostabilize.

PAGE 60

52 CHAPTER9.ECONOMICASPECTSANDIMPLICATIONS becomestable. PleaseseetheData'sectionforinformationonthenumberofroundsofre-orderingbeforepreferencesbecomestable.PleaseseethePopulationDensityandAgeofFirstMarriagesectionforan analysisofthepossibleapplicabilityofthisconjecturetomarriagedata.

PAGE 61

Chapter10 AnApplication:Population DensityandAgeofFirstMarriage Theevolutionary'modeltellsusthat,asthesizeofthegroupbeingmatchedgrows,theaverage amountoftimenecessaryforpreferencestostabilizegrowsaswell.Ifourevolving'preferences modelisaccurate,rationalindividualsconsideringpermanentpartnershipswillwanttowaituntil theirpreferencesarestable,beforepairingup.(Iftheydon'twait,theycouldendupinasub-optimal match.)Wewishtoknowwhetherdemographicdatasupportsthistheory. Informationonhowlongpeoplewaitbeforeenteringintolongtermorpermanentbusinesspartnershipsisn'treadilyavailable.Informationonhowlongpeoplewaittogetmarried,however,iseasy toobtain.Marriageisagreatexamplebecauseitrepresentsalongtermcommitment,evenwhen takingintoaccounttheriskofdivorce 1 Peoplelivinginareasofhighpopulationdensityhavealargernumberofindividualstointeract withthandopeopleinareasoflowpopulationdensity,therefore,peoplelivingindenseareasshould havealargerpotentialdatingpool.Ifpeoplehaveevolvingpreferencesconsistentwithourmodel, thoselivinginhighdensityareasshouldwaitlongertogetmarriedthanpeoplelivinginlowdensity areas 2 1 Novak(2008)claimsthatofthoseAmericanswhogetmarried,66%stayintheirrstmarriageuntildeath(the deathofeitherspouse). 2 Thisis,ofcourseageneralization.Wearespeakingoftheexpectedmedianvalue.

PAGE 62

54 CHAPTER10.POPULATIONDENSITYANDMARRIAGE Data WehavegathereddatafromtheU.S.Censuswebsite.Theinformationonpopulationdensity bystateisfromthe2000U.S.Census(themostrecentinformationwecouldnd)(Bureau[2000]). Medianageatrstmarriagedataforeachstatewasavailableseparatelyformenandwomenviathe 2005AmericanCommunitySurvey(Bureau[2005a]andBureau[2005b]).Wehavecalculatedthe approximatemedianageofrstmarriageforeachstatebyaveragingthemaleandfemalevalues. (Thegenderratiomaynotbeexactlyone,butitshouldbecloseenough'forourpurposes). WemeasuredthecorrelationbetweenageofrstmarriageandpopulationdensityintheUnited States(NotincludingDC.DCisnotastateandisanoutlierintermsofpopulationdensity,with nearlytentimesthepopulationdensityofthedenseststate): Wealsolookedatthee" ectofexcludingAlaskafromouranalysis.(Alaskahasthelargestmaleto femaleratioofanystateandhasapproximately1/5thepopulationdensityofthesecondleastdense state.Itmayactasanoutlierandskewourdata.)

PAGE 63

55 Theredoesn'tseemtobeahugee" ectontheR-squaredvalueeitherway,butwewillcontinueexcludingAlaskafromouranalysis.Wenoticethatthereisareasonablystrongcorrelation(withor withoutAlaska)betweenmedianagerstmarriageandnumberofpersonspersquaremile.The relationshipdoesn'tseemquitelinear,buttheR-squaredvalueislowerforalogarithmiccorrelation thanforthelinearcorrelation,sowewillkeepusingtheassumptionofalinearrelationship:

PAGE 64

56 CHAPTER10.POPULATIONDENSITYANDMARRIAGE Wewishtotestthehypothesisthatpopulationdensityisaexplanatoryvariableonwhichageof rstmarriageisdependent.Whilewedoseeacorrelationbetweenthetwovariables,wedonot knowifthiscorrelationisdirectorindirect.Populationdensitymaysimplyactasanunintentional proxyforanomittedthirdvariable. Thisomittedthirdvariablecouldhavetodowithlevelofeducation.Thosewhostayinschool longermaywaitlongertogetmarried.Peopleinmetropolitan(moredenselypopulated)areasmay bemorelikelytopursueasecondaryeducation.Unemploymentandpovertymayformastrongincentivetogetmarriedinordertotakeadvantageofhouseholdeconomiesofscale(cohabitationmay reducelivingexpenses 3 ).Alternatively,thoselivingunderthepovertylineorwithoutemployment maywishtodelaystartingafamily'untiltheyfeelmorenanciallysecure.Unemploymentand povertyratesmayalsocorrelatewithpopulationdensity,givingusthefalseimpressionofadirect relationshipbetweenpopulationdensityandageofrstmarriage. Wecouldre-runouranalysisincludingvariablesfortheseandothersocioeconomicfactors.Our smallnumberofdatapoints(only49,nowthatwehaveexcludedAlaska),however,makesitimpossibleforustousealotofexplanatoryvariablesatonce(thestandarderrorsgrowtoolarge).Ideally, wewouldliketousedataorganizedbyindividual,ratherthanbystate.Wecouldgetdataonthe populationdensityofthetownorcityeachindividuallivesin(weassumepeoplearemorelikelyto datethoseinthesametownthanthosewholiveacrossthestate),aswellasassortedsocioeconomic data. Fortunately,thisworkhasalreadybeendoneforus.ThearticleSomeWomenMarryYoung: TransitionstoFirstMarriageinMetropolitanandNonmetropolitanAreas,'waspublishedinthe JournalofMarriageandtheFamilyin1993.Theauthors,McLaughlin,LichterandJohnston,look forfactorsthatexplainthestrongcorrelationbetweentheageatwhichwomenenterintotheirrst marriageandthewomen'sresidenceinmetropolitanversusnon-metropolitanareas 4 .Theauthors... ...examinetheextenttowhichthetimingofrstmarriagedi" ersformetropolitanand non-metropolitanyoungwomen.Individual-leveldatafromtheNationalLongitudinal SurveyofYoutharematchedtolocalmarriagemarketconditionstoestimatediscrete 3 Cohabitationdoesnotimplymarriage,butwemayseeacorrelation. 4 Residenceinametropolitanversusnonmetropolitanareaisrepresentedintheregressionanalysisviaabinary dummyvariable.

PAGE 65

57 timehazardmodelsoftransitionstorstmarriage.(McLaughlinetal.[1993]pg827) Explanatoryvariablesusedincludethewoman'srace,levelofeducation,parents'maritalstatus, mother'slevelofeducation,earnings,employmentstatusovertheprioryear,receiptofpublicassistance,enrollmentinschool,cohabitation,thesexratiowhereshelives,theunemploymentrate fornearbymen,thepovertyratefornearbymen,whethershehasanychildren,andwhethershe livesintheSouth.Theauthorsalsoexamineeachwoman'sattitudetowardwomen'srolesandemployment,'viaasurvey,andlookintowhetherthesetheresultsareusefulasanexplanatoryvariable. Theauthorsconclude,Youngnonmetropolitanwomenmarryatayoungeragethanmetropolitanwomen,adi" erenceonlypartiallyexplainedbyvariationsintheattributesoftheyoungwomen, theirfamilies,andthelocalmarriagemarket.(McLaughlinetal.[1993]pg827).Inotherwords,the dummyvariableformetropolitanversusnon-metropolitanresidencewasstillconsideredsignicant aftertheincorporationofthesefactors. Lackingotherfactorsthatmightexplainthecorrelation,wesuggestthatwomeninareasofhigh populationdensitywaitlongertogetmarriedbecausetheyhavealargerdatingpool,whichresults intheirpreferencestakinglongertostabilize.

PAGE 67

Chapter11 ConjecturesandVariationsonOur Model,forPossibleFutureStudy 11.1Variations Wehavepresentedabasicmodelforevolvingpreferences.Ourdenitionofutilityisarbitrary.As statedearlier,wecouldjustaseasilydeneanonlinearrelationshipbetweenrankingandutility, suchas: Utility=(placeonlist) n where n< $ 1 or n ( placeonlist ) where0
PAGE 68

60 CHAPTER11.CONJECTURESANDVARIATIONS ...wherekisaconstantdetermininghowmuch caresabout 'shappiness.Inourmodel,everyone discoverseveryoneelse'srankingssimultaneously,andtheneveryonereordershisorherrankingssimultaneously.Wecouldhaveaversion,inwhichgroupstaketurnsreorderingtheirrankings.For example,inthemarriagemodel,thewomencouldreordertheirrankingsrst.Themencouldthen reordertheirrankings,basingtheirestimatesforJoint-Utilityontheir(original)rankingsandthe women's(nowrevised)rankings.Thenthewomencouldreordertheirrankingsbasedontheirand themen'sonce-revisedrankings.Thenthemenwouldreordertheirrankingsbasedonthewomen's twice-revisedandtheironcerevisedrankings,andsoon,untilrankingsstabilize. Insteadofadatingfollowedbymarriagemodel,wecouldhaveamodelinwhicheveryoneisalwayspairedup,butblindtotheopinionsofanyonebuthisorherpartnerforanygivenround. Forexample,saywomenA,B,andCarebeingmatchedwithmenD,E,andF.Westarto"with everyonepairedup.Let'ssaywomanAstartso"pairedwithmanD.WomanAandmanDknow whattheythinkofeachother,soAandDestimatetheirjoint-utilityviaourJoin-Utilityfunction. WomanAdoesnotknowwhatmenEandFthinkofher;sheassumestheyhavegivenherthe samerankingshehasgiventoeachofthem.Athenreordersherrankings,estimatingherjointutilityfromamatchwithEorFtobeequalto2 % n $ 2 % (rankingofman E onwoman A 'slist) or2 % n $ 2 % (rankingofman F onwoman A 'slist),respectively.Otherparticipantsestimatetheir joint-utilitysimilarly.TheparticipantsarethenpairedviatheStableMatchingAlgorithm(inaccordancewiththeirnewpreferences).Everyonethenreordershisorherrankings(again). AswementionedinChapter8,somemodelsofone-to-onematchingincludereputation'asafactor. Mostofthesemodelsusereputationasaproxyformissinginformation.Ourparticipantsaren't tryingtodeciphereachother'snoisysignals.However,theymaycareabouttheirpartners'potential useasapositionalgood. Positionalgoodsaregoodsconsumedprimarilytoimpressothers.Oneexampleofapositional goodiswardrobeforjobinterviews.Inanexperiment,whengiventhechoicebetweenthefollowing twohypotheticalscenarios: A:Youhavea$200outttoweartojobinterviews;otherpeoplehave$100outts. B:Youhavea$400outttoweartojobinterviews;otherpeoplehave$600outts. (Solnick&Hemenway[2005]pg18)

PAGE 69

11.2.CONJECTURES 61 Sixty-twopercentofsurveyrespondentschoseoptionA(Solnick&Hemenway2005,pg14).Aless positionalgood,accordingtothissamesurvey,islifeexpectancy.Whengivenachoicebetweenthe followingtwoscenarios: A:Lifeexpectancyinyourcountryis72years;inothercountriesitis80years. B:Lifeexpectancyinyourcountryis68years;inothercountriesitis60years. (Solnick&Hemenway[2005]pg17) ElevenpercentofrespondentschoseoptionA.(Solnick&Hemenway[2005]pg14) Choosingalifepartnermay,tosome,beanon-positionalgood.However,thefactthateleven percentofparticipantsinthisexperimentsawlifeexpectancyasapositionalgood,suggeststhat thereareprobablysomepeopleforwhomanattractivespouseisapositionalgood.Wecaneasily conceiveofaversionofourevolutionarypreferencemodel,inwhichpeoplereordertheirpreferences notonlybasedontheirownpreferencesandthepreferencesoftheirpotentialspouses,butalsobased onthepopularityofthepotentialspouses. 11.2Conjectures InChapter6.2,weconductedanexperimenttodiscoverhowgroupsizea" ectsthenumberofrounds ofreorderingnecessaryforrankingstostabilize.Itappearsthatthemeanandmediannumberof roundsneededgrowslogarithmicallywithgroupsize.Wesawsomeoddbehaviorbetweengroup sizes13and14.Wewerenotabletogetanyusefulexperimentaldataonthemaximumnumberof trials. Wetheorizethatthemeanandmediannumberoftrialsneededgrowslogarithmicallyorsemilogarithmically.Wetheorizefurtherthat,neargroupsizes13and14,thereisasuddengainin meanandmediannumberofroundsneeded.Futurestudymightyieldamodelorexplanationof thisbehavior. Furtherstudymayalsoshowhowthemaximumpossiblenumberofroundsofreorderingneeded toreachstabilityvarieswithgroupsize.Basedonourtrialdata,wesuggestthatthemaximum possiblenumberofroundstostabilitygrowsquicklywithgroupsize,butthatthepercentofsetsof preferencesrequiringthemaximumnumberofroundsdecreaseswithgroupsize.

PAGE 70

62 CHAPTER11.CONJECTURESANDVARIATIONS Wehaveproposed(whatwebelievetobe)anewvariantoftheStableMarriageProblem.We havedemonstratedhowpreferencesinourmodelevolveandstabilize.Wehaveexploredsomeeconomicandmathematicalaspectsofourmodel.Weleavewithabetterunderstandingofourmodel, someunexpectedobservations,andseveralunansweredquestionsforfuturestudy.

PAGE 71

AppendixA Programs r randranks.m Theprogram r_randranks.m createsasetofrankingmatricesofsizen(tobespeciedbyuser) andoutputsthemasMandW.TherowsofMandthecolumnsofWcorrespondtorankinglists. TousethisprogramweaddittooneofMATLAB'sdirectoriesorincludeitinthepathand typeinthecommandwindow: [M,W]=r_randranks(n) Wherenisthenumberofmembersofeachgroup(inmarriagecontext:n=numberofwomen=number ofmen)andMandWarewhatevernamestheuserwantstostoreeachmatrixas.Forexample,if wetype: [X,Y]=r_randranks(3) Theprogramwillcreatetwo3x3matricescalledXandY.X'srowsandY'scolumnswillrepresent thepreferencelistsofthemembersofgroupsXandY,respectively. %r_randranks.m function[M,W]=r_randranks(n); M=zeros(n); W=zeros(n); fork=1:n M(k,:)=randperm(n); W(:,k)=randperm(n)';

PAGE 72

64 APPENDIXA.PROGRAMS end Theoutputwilllooksomethinglikethis: EDU>>[X,Y]=r_randranks(3) X= 312 132 132 Y= 333 122 211 EDU>>

PAGE 73

65 r MakePgsRanks.m Theprogram r_MakePgsRanks.m usesthe r_randranks.m programtocreatespairsof n by n ranking matrices.Werefertothe q thpreferencematrixfromgroup M as: PgsM(:,:,q) andthe q th preferencematrixfromgroup W as: PgsW(:,:,q) %r_MakePgsRanks.m function[PgsM,PgsW]=r_MakePgsRanks(n,s) pgs_done=0; PgsM=[]; PgsW=[]; whilepgs_done
PAGE 74

66 APPENDIXA.PROGRAMS r Match Alg.m r_Match_Alg.m usestheM-optimalversionoftheGale-ShapleyAlgorithmtomatcheveryoneup. BecausetherowsofMandcolumnsofWarerankinglists,ifwewanttondtheW-optimalmatching, wetypein: [w_partner,m_partner]=r_Match_Alg(W',M') wheninitializingthealgorithm.The 'functioninMATLABgivesusthetransposeofthematrix.Now,thecolumnsofMandrowsofW arerankinglists. %r_Match_Alg.m function[m_partner,w_partner]=r_Match_Alg(M,W)%note:wedidn'treallyhave %tocreateseperatepartnerlistsforthemenandwomen,however,this %makestheprogrammingeasier,albeitlesselegant n=length(M); w_partner=zeros(1,n);%noonepartneredupyet m_partner=zeros(1,n); m_opt=zeros(1,n);%m_opt(man)istherankingonman'slistofthelastwomanheasked whilesum(~(m_partner)) forman=1:n%foreachman if~(m_partner(man))%ifthemanisnotyetpartneredup m_opt(man)=m_opt(man)+1;%themanthinksofhisnextbestchoice w_ask=find(M(man,:)==m_opt(man));%hisnextbestchoiceisthewomanhewillask if~(w_partner(w_ask))%ifthewomanbeingaskedisnotyetpartnered w_partner(w_ask)=man;%sheautomaticallysaysyesandispartnered m_partner(man)=w_ask;%andthemanispartnered elseifW(man,w_ask)
PAGE 75

67 end

PAGE 76

68 APPENDIXA.PROGRAMS r reorder ranks.m The r_reorder_ranks.m programreorderstherankingmatricesMandWonce(therankingsmay ormaynotbestableafteronlyoneround)andstoresthereorderedmatricesas r_NewM and r_NewW %r_reorder_ranks.m function[r_NewM,r_NewW]=r_reorder_ranks(M,W) t=length(W); [r_comboM,r_comboW]=r_combo(M,W); [extraneous_crap,r]=sort(r_comboM'); r=r'; v=zeros(t); fork=1:t forw=1:t v(k,r(k,w))=w; end end r_NewM=v; [extraneous_crap,r]=sort(r_comboW); v=zeros(t); fork=1:t forw=1:t v(r(w,k),k)=w; end end r_NewW=v;

PAGE 77

69 r combo M.m r_combo_M.m isaprogramusedby r_reorder_ranks.m .Wewillneveruseitdirectly. %r_combo.m function[r_comboM,r_comboW]=r_combo(M,W); %notethisistherevisedsystem,whereinanibyjmatrixialways %representsmenandjalwaysrepresentswomeninboththemen'sprefmatrix %andinthewomen'srankingmatrix. t=length(M); s=(10^(-(t+1))); r_comboM=(M+W+M*s); r_comboW=(W+M-M*s); end

PAGE 78

70 APPENDIXA.PROGRAMS r until stable.m r_until_stable.m tellsushowmanyroundsofreorderingtherankingmatricesMandWhaveto undergobeforetherankingsstabilize. \verb#number_trials#=thenumberofroundsofreordering \verb#r_NewM#isthefinal(stable)rankingsmatrixforgroupM \verb#r_NewW#isthefinal(stable)rankingsmatrixforgroupW %r_until_stable.m function[number_trials,r_NewM,r_NewW]=r_until_stable(M,W); number_trials=-1; t=length(M); r_OldM=zeros(t); r_OldW=zeros(t); r_NewM=M; r_NewW=W; whilesum(sum((abs(r_OldM-r_NewM)+abs(r_OldW-r_NewW))))>eps%whilethenewsetofranksisdifferentfromthepervioussetofranks r_OldM=r_NewM;%thenewranksarenowthepreviodranks r_OldW=r_NewW;%ditto [r_NewM,r_NewW]=r_reorder_ranks(r_OldM,r_OldW);%wereorderthenowoldrankstogetthenewranksforthisround number_trials=number_trials+1; end

PAGE 79

71 r many trial one size.m %r_many_trial_one_size.m function[trials_needed]=r_many_trial_one_size(n,trials); trials_needed=[]; fork=1:trials [M,W]=r_randranks(n); [number_trials]=r_until_stable(M,W); if(number_trials>5) M; W; number_trials; end trials_needed=[trials_needed,number_trials]; k; end

PAGE 80

72 APPENDIXA.PROGRAMS r rand mult size MW simult.m %r_rand_mult_size_MW_simult.m initial_men=input('Pleaseenterinitialnumberofmen:>') increment_men=input('Pleaseentertheincrement(mustbeawholenumber):>') final_men=input('Pleaseenterthefinalnumberofmen:>') s=input('Pleaseenternumberoftrials:>') group_sizes=[initial_men:increment_men:final_men]; r_Rounds_Needed_for_Each=[]; fork=1:length(group_sizes) n=group_sizes(k) s=s [PgsM,PgsW]=r_MakePgsRanks(n,s); r_Final_Rounds_Needed=[]; fork=1:s M=PgsM(:,:,k); W=PgsW(:,:,k); [Rounds_Needed]=r_until_stable(M,W); r_Final_Rounds_Needed=[r_Final_Rounds_Needed,Rounds_Needed]; end r_Rounds_Needed_for_Each=cat(3,r_Rounds_Needed_for_Each,r_Final_Rounds_Needed); end r_Rounds_Needed_for_Each;

PAGE 81

AppendixB RepeatingAnExperiment Aswasstatedinfootnote11,weranourexperimentasecondtimetoseeiftherewasajumpin meannumberoftrialsbetweengroupsizes13and14: Wesawamorepronouncedjumpthanwedidinthepreviousattempt.Thejumpislocatedin thesameplace:betweengroupsizes13and14.Furthermore,inthissecondattempt,wealsonoticedajumpinthemediannumberofroundsuntilstability:

PAGE 82

74 APPENDIXB.REPEATINGANEXPERIMENT Thissuggeststhatthejumpwasnotaquirkofourrandomdatafromthersttimewedidthis experiment.

PAGE 83

REFERENCES 75 References AhmetAlkan.Nonexistenceofstablethreesomematchings. "Mathematical Social Sciences,16(2): 207209,1988. AxelAndersonandLonesSmith.Assortativematchingandreputation. SSRN eLibrary,2006. U.S.CensusBureau.Census2000summaryle1(sf1)100-percentdata:Datasetgct-ph1-r. population,housingunits,area,anddensity(geographiesrankedbytotalpopulation)',2000. URL http://factfinder.census.gov/servlet/GCTTable?_bm=n&_lang=en&mt_name=DEC_ 2000_SF1_U_GCTPH1R_US9S&format=US-9S&_box_head_nbr=GCT-PH1-R&ds_name=DEC_2000_ SF1_U&geo_id=01000US U.S.CensusBureau.2005americancommunitysurvey;datasetr1204.medianageatrstmarriage formen:2005',2005a.URL http://factfinder.census.gov/servlet/GRTTable?_bm=y&-geo_ id=01000US&-_box_head_nbr=R1204&-ds_name=ACS_2005_EST_G00_&-_lang=en&-redoLog= false&-mt_name=ACS_2005_EST_G00_R1204_US30&-format=US-30 U.S.CensusBureau.2005americancommunitysurvey;datasetr1205.medianageatrstmarriage forwomen:2005',2005b.URL http://factfinder.census.gov/servlet/GRTTable?_bm= y&-ds_name=ACS_2005_EST_G00_&-_col=disp_order&-CONTEXT=grt&-mt_name=ACS_2005_ EST_G00_R1205_US30&-_source=mdr&-redoLog=false&-geo_id=01000US&-format=US-30&-_ lang=en BryanCaplan.Divisionoflaboringraphicnovels. EconLog,2008.URL http://econlog.econlib. org/archives/2007/04/division_of_lab.html HectorChade.Matchingwithnoiseandtheacceptancecurse. Journal of Economic Theory,129(1): 81113,2006.

PAGE 84

76 REFERENCES HectorChade,GregLewis,andLonesSmith.Thecollegeadmissionsproblemunderuncertainty. Society for Economic Dynamics,2006.URL http://ideas.repec.org/p/red/sed006/125.htm HenryCunynghame.Someimprovementsinsimplegeometricalmethodsoftreatingexchangevalue, monopoly,andrent. The Economic Journal,2(5):3552,1892. TheEconomist.services,unknown.URL http://www.economist.com/research/economics/ searchActionTerms.cfm?query=services BeltonMFleisher. The Economics of Delinquency.QuadrangleBooks,Chicago,1966. D.GaleandL.S.Shapley.Collegeadmissionsandthestabilityofmarriage. The American Mathematical Monthly,69(1):915,1962. DanGuseldandRobertW.Irving. The Stable Marriage Problem : Structure and Algorithms. MITPress,Cambridge,Mass,1995. WernerGuth,RolfSchmittberger,andBerndSchwarze.Anexperimentalanalysisofultimatum bargaining. Journal of Economic Behavior & Organization,3(4):367388,1982. JohnLocke. Some Considerations of the Consequences of the Lowering of Interest, and Raising the Value of Money.HistoryofEconomicThoughtBooks.McMasterUniversityArchivefor theHistoryofEconomicThough,1691.URL http://socserv.mcmaster.ca/econ/ugcm/3ll3/ locke/consid.txt RogerMason.Interpersonale" ectsonconsumerdemandineconomictheoryandmarketingthought, 1890-1950. Journal of Economic Issues,29,1995. KevinMcCabe.Whatistheultimatumgame?,2003.URL http://neuroeconomics.typepad. com/neuroeconomics/2003/09/what_is_the_ult.html DianeK.McLaughlin,DanielT.Lichter,andGailM.Johnston.Somewomenmarryyoung:Transitionstorstmarriageinmetropolitanandnonmetropolitanareas. Journal of Marriage and the Family,55(4):827838,1993. OskarMorgenstern.Demandtheoryreconsidered. The Quarterly Journal of Economics,62(2): 165201,1948. MichaelNovak.Understandingamerica:Theanatomyofanexceptionalnation.In Understanding America: The Anatomy of an Exceptional Nation.AmericanEnterpriseInstituteforPublic

PAGE 85

REFERENCES 77 PolicyResearch,April2008.URL http://www.aei.org/events/filter.all,eventID.1691/ transcript.asp HesselOosterbeek,RandolphSloof,andGijsvandeKuilen.Culturaldi" erencesinultimatumgame experiments:Evidencefromameta-analysis. Experimental Economics,7(2):171188,062004. URL http://ideas.repec.org/a/kap/expeco/v7y2004i2p171-188.html MichaelOstrovsky,ArchishmanChakraborty,andAlessandroCitanna.Two-sidedmatchingwith interdependentvalues.In 2008 AEA Conference.AEA,January2008.URL http://www.aeaweb. org/annual_mtg_papers/2008/2008_334.pdf MatthewRabin.Incorporatingfairnessintogametheoryandeconomics. The American Economic Review,83(5):12811302,1993. RobertShimerandLonesSmith.Assortativematchingandsearch. Econometrica,68(2):343369, 2000. LonesSmith.TheMarriageModelWithSearchFrictions. Journal of Political Economy, Vol. 114, pp. 1124-1144, December 2006,1997. SaraJ.SolnickandDavidHemenway.Arepositionalconcernsstrongerinsomedomainsthanin others? American Economic Review,95(2):147151,May2005.URL http://ideas.repec.org/ a/aea/aecrev/v95y2005i2p147-151.html ThorsteinVeblen. The Theory of the Leisure Class.OxfordUniversityPressInc.,Oxford,1899. republished2007.


ERROR LOADING HTML FROM SOURCE (http://ncf.sobek.ufl.edu//design/skins/UFDC/html/footer_item.html)